化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5264-5270.DOI: 10.16085/j.issn.1000-6613.2019-0428
收稿日期:
2019-03-21
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
戈志华
作者简介:
戈志华(1969—),女,教授,博士生导师,研究方向为电站机组运行优化和热电联产系统节能。E-mail:基金资助:
Zhihua GE(),Youjun ZHANG,Nian XIONG,Shifei ZHAO
Received:
2019-03-21
Online:
2019-12-05
Published:
2019-12-05
Contact:
Zhihua GE
摘要:
汽轮机高背压供热方式可回收低压缸排汽余热,扩大机组的供热能力,减少高品位抽汽造成的可用能损失,能源转换效率高。供热季运行背压高,低压转子采用了双转子互换技术,低压转子结构的变化使低压部分热力特性发生变化。本文建立了300MW等级高背压供热机组热力系统模型,计算并分析抽汽参数变化对低压加热器附加单耗的影响,并通过参数优化降低供热季低压加热器附加单耗。获得五段和六段抽汽压力优化结果,降低了传热端差,使各级低压加热器温升分配合理,优化后机组发电功率增加507kW,?损减小575.5kW,整体附加单耗下降0.3121g/(kW·h)。以此为基础,进行高背压供热机低压通流部分热力计算,重新分配低压缸各压力级焓降,提高低压缸的通流效率。结果表明:通过对低压回热系统和通流部分优化,低压缸内效率提高至0.9250,机组发电功率增加3068.49kW。
中图分类号:
戈志华,张尤俊,熊念,赵世飞. 高背压供热汽轮机低压部分性能优化[J]. 化工进展, 2019, 38(12): 5264-5270.
Zhihua GE,Youjun ZHANG,Nian XIONG,Shifei ZHAO. Optimization of low-pressure flow part of high back-pressureheating steam turbine[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5264-5270.
项目 | 数值 | 项目 | 数值 |
---|---|---|---|
发电功率/kW | 238928 | 再热蒸汽流量/kg·h-1 | 745105 |
主蒸汽压力/MPa | 16.67 | 抽汽压力/MPa | 0.791 |
再热蒸汽压力/MPa | 3.191 | 抽汽量/kg·h-1 | 190000 |
主蒸汽温度/℃ | 538 | 排汽压力/kPa | 54 |
再热蒸汽温度/℃ | 538 | 排汽流量/kg·h-1 | 444240 |
主蒸汽流量/kg·h-1 | 970004 | 末级高加出口给水温度/℃ | 276.3 |
表1 机组额定供热工况基本参数
项目 | 数值 | 项目 | 数值 |
---|---|---|---|
发电功率/kW | 238928 | 再热蒸汽流量/kg·h-1 | 745105 |
主蒸汽压力/MPa | 16.67 | 抽汽压力/MPa | 0.791 |
再热蒸汽压力/MPa | 3.191 | 抽汽量/kg·h-1 | 190000 |
主蒸汽温度/℃ | 538 | 排汽压力/kPa | 54 |
再热蒸汽温度/℃ | 538 | 排汽流量/kg·h-1 | 444240 |
主蒸汽流量/kg·h-1 | 970004 | 末级高加出口给水温度/℃ | 276.3 |
工况 | 设计功率/kW | 模拟功率/kW | 相对误差/% |
---|---|---|---|
额定供热工况 | 238928 | 238900 | 0.01 |
最大供热工况 | 261781 | 261551 | 0.09 |
最小供热工况 | 196493 | 196236 | 0.13 |
表2 模拟功率与设计功率误差比较
工况 | 设计功率/kW | 模拟功率/kW | 相对误差/% |
---|---|---|---|
额定供热工况 | 238928 | 238900 | 0.01 |
最大供热工况 | 261781 | 261551 | 0.09 |
最小供热工况 | 196493 | 196236 | 0.13 |
项目 | 1#高加 | 2#高加 | 3#高加 | 4#除氧器 | 5#低加 | 6#低加 | 合计 |
---|---|---|---|---|---|---|---|
?损/kW | 990.062 | 1277.862 | 1348.868 | 3768.21 | 1267.125 | 129.27 | 8781.397 |
附加单耗/g·kW-1·h-1 | 0.4572 | 0.5901 | 0.6628 | 1.74 | 0.5851 | 0.0587 | 4.0939 |
表3 回热系统?损及附加单耗
项目 | 1#高加 | 2#高加 | 3#高加 | 4#除氧器 | 5#低加 | 6#低加 | 合计 |
---|---|---|---|---|---|---|---|
?损/kW | 990.062 | 1277.862 | 1348.868 | 3768.21 | 1267.125 | 129.27 | 8781.397 |
附加单耗/g·kW-1·h-1 | 0.4572 | 0.5901 | 0.6628 | 1.74 | 0.5851 | 0.0587 | 4.0939 |
项目 | 优化前 | 优化后 | |||||
---|---|---|---|---|---|---|---|
4#除氧器 | 5#低加 | 6#低加 | 4#除氧器 | 5#低加 | 6#低加 | ||
凝结水出口温度/℃ | 171.04 | 127.025 | 92.485 | 171.04 | 135.158 | 108.171 | |
凝结水出口比熵/kJ·kg-1·K-1 | 2.0312 | 1.6062 | 1.2208 | 2.0312 | 1.6884 | 1.3979 | |
抽汽流量/kg·s-1 | 13.725 | 11.731 | 3.108 | 11.001 | 9.401 | 8.362 | |
抽汽压力/MPa | 0.7515 | 0.2688 | 0.0855 | 0.7515 | 0.341 | 0.1481 | |
抽汽比熵/kJ·kg-1·K-1 | 7.3963 | 7.4763 | 7.5472 | 7.9363 | 7.4608 | 7.5107 | |
疏水温度/℃ | — | 98.085 | 88.931 | — | 113.771 | 88.931 | |
疏水比熵/kJ·kg-1·K-1 | — | 1.2852 | 1.1803 | — | 1.46 | 1.1802 |
表4 额定高背压供热工况低压加热器热力学性能参数比较
项目 | 优化前 | 优化后 | |||||
---|---|---|---|---|---|---|---|
4#除氧器 | 5#低加 | 6#低加 | 4#除氧器 | 5#低加 | 6#低加 | ||
凝结水出口温度/℃ | 171.04 | 127.025 | 92.485 | 171.04 | 135.158 | 108.171 | |
凝结水出口比熵/kJ·kg-1·K-1 | 2.0312 | 1.6062 | 1.2208 | 2.0312 | 1.6884 | 1.3979 | |
抽汽流量/kg·s-1 | 13.725 | 11.731 | 3.108 | 11.001 | 9.401 | 8.362 | |
抽汽压力/MPa | 0.7515 | 0.2688 | 0.0855 | 0.7515 | 0.341 | 0.1481 | |
抽汽比熵/kJ·kg-1·K-1 | 7.3963 | 7.4763 | 7.5472 | 7.9363 | 7.4608 | 7.5107 | |
疏水温度/℃ | — | 98.085 | 88.931 | — | 113.771 | 88.931 | |
疏水比熵/kJ·kg-1·K-1 | — | 1.2852 | 1.1803 | — | 1.46 | 1.1802 |
项目 | 压力级1 | 压力级2 | 压力级3 | 压力级4 | 压力级5 |
---|---|---|---|---|---|
蒸汽流量/kg·s-1 | 95.345 | 95.345 | 92.323 | 87.045 | 87.045 |
动叶平均直径/mm | 1920 | 1950 | 1999 | 2058 | 2145 |
级前压力/MPa | 0.756 | 0.5081 | 0.3267 | 0.1936 | 0.1057 |
圆周速度/m·s-1 | 301.59 | 306.31 | 314.00 | 323.27 | 336.93 |
假想速比 | 0.6563 | 0.6562 | 0.6607 | 0.6596 | 0.6913 |
理想比焓降/kJ·kg-1 | 105.59 | 105.25 | 109.95 | 116.71 | 113.54 |
喷嘴损失/kJ·kg-1 | 3.12 | 3.438 | 3.514 | 3.549 | 3.817 |
动叶损失/kJ·kg-1 | 3.301 | 3.316 | 3.461 | 3.661 | 3.625 |
余速损失/kJ·kg-1 | 3.709 | 4.281 | 4.849 | 5.208 | 7.721 |
级后压力/MPa | 0.5081 | 0.3267 | 0.1936 | 0.1057 | 0.0532 |
轮周效率 | 0.9159 | 0.9241 | 0.9234 | 0.9373 | 0.9331 |
叶高损失/kJ·kg-1 | 1.68 | 1.35 | 1.04 | 0.7796 | 0.5279 |
漏汽损失/kJ·kg-1 | 1.16 | 0.93 | 1.02 | 0.7578 | 0.7776 |
级的内功率/kW | 8831.05 | 9118.99 | 9145.33 | 9238.95 | 8903.35 |
级的相对内效率 | 0.9091 | 0.9026 | 0.9042 | 0.9238 | 0.9213 |
表5 低压缸通流部分热力计算结果
项目 | 压力级1 | 压力级2 | 压力级3 | 压力级4 | 压力级5 |
---|---|---|---|---|---|
蒸汽流量/kg·s-1 | 95.345 | 95.345 | 92.323 | 87.045 | 87.045 |
动叶平均直径/mm | 1920 | 1950 | 1999 | 2058 | 2145 |
级前压力/MPa | 0.756 | 0.5081 | 0.3267 | 0.1936 | 0.1057 |
圆周速度/m·s-1 | 301.59 | 306.31 | 314.00 | 323.27 | 336.93 |
假想速比 | 0.6563 | 0.6562 | 0.6607 | 0.6596 | 0.6913 |
理想比焓降/kJ·kg-1 | 105.59 | 105.25 | 109.95 | 116.71 | 113.54 |
喷嘴损失/kJ·kg-1 | 3.12 | 3.438 | 3.514 | 3.549 | 3.817 |
动叶损失/kJ·kg-1 | 3.301 | 3.316 | 3.461 | 3.661 | 3.625 |
余速损失/kJ·kg-1 | 3.709 | 4.281 | 4.849 | 5.208 | 7.721 |
级后压力/MPa | 0.5081 | 0.3267 | 0.1936 | 0.1057 | 0.0532 |
轮周效率 | 0.9159 | 0.9241 | 0.9234 | 0.9373 | 0.9331 |
叶高损失/kJ·kg-1 | 1.68 | 1.35 | 1.04 | 0.7796 | 0.5279 |
漏汽损失/kJ·kg-1 | 1.16 | 0.93 | 1.02 | 0.7578 | 0.7776 |
级的内功率/kW | 8831.05 | 9118.99 | 9145.33 | 9238.95 | 8903.35 |
级的相对内效率 | 0.9091 | 0.9026 | 0.9042 | 0.9238 | 0.9213 |
项目 | 优化前 | 优化后 | 变化值 |
---|---|---|---|
低压缸进汽量/t·h-1 | 676.681 | 682.507 | +5.83 |
低压缸进汽压力/MPa | 0.756 | 0.756 | 0 |
低压缸进汽焓值/kJ·kg-1 | 3135.77 | 3135.77 | 0 |
低压缸排汽压力/MPa | 0.054 | 0.054 | 0 |
低压缸排汽量/t·h-1 | 623.26 | 622.54 | -0.72 |
低压缸排汽焓值/kJ·kg-1 | 2643.495 | 2627.859 | -15.64 |
低压缸热效率/% | 89.65 | 92.50 | +2.85 |
发电功率/kW | 266376.48 | 269444.97 | +3068.49 |
五段抽汽压力/MPa | 0.283 | 0.327 | +0.04 |
五段抽汽流量/t·h-1 | 42.231 | 21.821 | -20.41 |
六段抽汽压力/MPa | 0.09 | 0.194 | +0.10 |
六段抽汽流量/t·h-1 | 11.19 | 38.146 | +26.96 |
表6 优化前后机组热力性能对比
项目 | 优化前 | 优化后 | 变化值 |
---|---|---|---|
低压缸进汽量/t·h-1 | 676.681 | 682.507 | +5.83 |
低压缸进汽压力/MPa | 0.756 | 0.756 | 0 |
低压缸进汽焓值/kJ·kg-1 | 3135.77 | 3135.77 | 0 |
低压缸排汽压力/MPa | 0.054 | 0.054 | 0 |
低压缸排汽量/t·h-1 | 623.26 | 622.54 | -0.72 |
低压缸排汽焓值/kJ·kg-1 | 2643.495 | 2627.859 | -15.64 |
低压缸热效率/% | 89.65 | 92.50 | +2.85 |
发电功率/kW | 266376.48 | 269444.97 | +3068.49 |
五段抽汽压力/MPa | 0.283 | 0.327 | +0.04 |
五段抽汽流量/t·h-1 | 42.231 | 21.821 | -20.41 |
六段抽汽压力/MPa | 0.09 | 0.194 | +0.10 |
六段抽汽流量/t·h-1 | 11.19 | 38.146 | +26.96 |
1 | 戈志华, 陈玉勇, 李沛峰, 等. 基于当量抽汽压力的大型热电联产供热模式研究[J]. 动力工程学报, 2014, 34(7): 569-575. |
GE Zhihua, CHEN Yuyong, LI Peifeng, et al. Study on heating mode of a large heat and power cogeneration unit based on equivalent extraction pressure[J]. Journal of Chinese Society of Power Engineering, 2014, 34(7): 569-575. | |
5 | 石德静, 姜维军. 300MW汽轮机高背压循环水供热技术研究及应用[J]. 山东电力技术, 2015, 42(4): 8-11. |
SHI Dejing, JIANG Weijun. Circulating water heating technology for a 300MW steam turbine with high back-pressure[J]. Shandong Electric Power, 2015, 42(4): 8-11. | |
6 | 邵建明, 陈鹏帅, 周勇. 300MW湿冷汽轮机双转子互换高背压供热改造应用[J]. 能源研究与信息, 2014, 30(2): 100-103. |
SHAO Jianming, CHEN Pengshuai, ZHOU Yong. An application of double-rotor interchange technology in the retrofit for a high back pressure heat supply system with 300MW condensing turbine[J]. Energy Research and Information, 2014, 30(2): 100-103. | |
2 | 戈志华, 杨佳霖, 何坚忍, 等. 大型纯凝汽轮机供热改造节能研究[J]. 中国电机工程学报, 2012, 32(17): 25-30. |
GE Zhihua, YANG Jialin, HE Jianren, et al. Energy saving research of heating retrofitting for large scale condensing turbine[J]. Proceedings of the CSEE, 2012, 32(17): 25-30. | |
7 | 国内首台350MW间冷机组高背压科技项目通过验收[J]. 发电与空调,2017, 38(4): 32. |
The first domestic high back-pressure technology project for 350MW intercooler units passed the acceptance test[J]. Power Generation & Air-Conditioning,2017, 38(4): 32. | |
3 | 成渫畏, 王学栋, 宋昂. 首台300MW汽轮机循环水供热改造技术与经济指标分析[J]. 发电与空调, 2016, 37(1): 6-10. |
CHENG Xiewei, WANG Xuedong, SONG Ang. Transformation technology and economic indicators analysis of the first 300MW steam turbine supplying heat using high-temperature circulating water[J]. Power Generation & Air Conditioning, 2016, 37(1): 6-10. | |
8 | 史敬杰, 张晓静. 高背压供热技术在300MW空冷供热机组的应用[J]. 科技展望, 2015, 25(28): 62,64. |
SHI Jingjie, ZHANG Xiaojing. Application of high back pressure heating technology in 300MW air-cooled heating units[J]. Science & Technology Outlook, 2015, 25(28): 62,64. | |
4 | 戈志华, 孙诗梦, 万燕, 等. 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报, 2017, 37(11): 3216-3222, 3377. |
GE Zhihua, SUN Shimeng, WAN Yan, et al. Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine units[J]. Proceedings of the CSEE, 2017, 37(11): 3216-3222, 3377. | |
9 | 李尚华, 李洪生, 韩玲. 350MW超临界空冷机组高背压循环水供热方案简析[J]. 华电技术, 2015, 37(12): 45-46, 75. |
LI Shanghua, LI Hongsheng, HAN Ling. Analysis of the high back pressure circulating water heating solution of 350MW supercritical air cooling unit[J]. Huadian Technology, 2015, 37(12): 45-46, 75. | |
10 | 成渫畏, 王学栋, 郝玉振. 140MW凝汽机组“双背压双转子互换”供热改造技术分析[J]. 发电与空调, 2013, 34(3): 5-8, 12. |
CHENG Xiewei, WANG Xuedong, HAO Yuzhen. Heating transformation technical analysis of double backpressure dual rotor swap for 140MW condensing unit[J]. Power Generation & Air Conditioning, 2013, 34(3): 5-8, 12. | |
11 | 闫森, 王伟芳, 蒋浦宁. 300MW汽轮机供热改造双低压转子互换技术应用[J]. 热力透平, 2015, 44(1): 10-12. |
YAN Sen, WANG Weifang, JIANG Puning. Application of double LP rotor interchangeable technology for heating improving in 300MW steam turbines[J]. Thermal Turbine, 2015, 44(1): 10-12. | |
12 | 万燕, 孙诗梦, 戈志华, 等. 大型热电联产机组高背压供热改造全工况热经济分析[J]. 电力建设, 2016(4): 131-137. |
WAN Yan, SUN Shimeng, GE Zhihua, et al. Thermo-economic analysis of high back pressure heating retrofit for large-scale cogeneration unit under full condition[J]. Electric Power Construction, 2016(4): 131-137. | |
13 | 万逵芳. 末级最小安全流量对空冷机组高背压供热的影响[J]. 汽轮机技术, 2017, 59(5): 381-384. |
WAN Kuifang. Influence of the stage’s minimum safe flow on heat supply of air cooling steam turbine unit[J].Turbine Technology, 2017, 59(5): 381-384. | |
14 | 戈志华, 胡学伟, 杨志平. 能量梯级利用在热电联产中的应用[J]. 华北电力大学学报(自然科学版), 2010, 37(1): 66-68. |
GE Zhihua, HU Xuewei, YANG Zhiping. The application of energy step utilize in co-generation[J]. Journal of North China Electric Power University, 2010, 37(1): 66-68. | |
15 | 时斌, 王宁玲, 李晓恩, 等. 供水温度对高背压热电联产系统能耗水平的影响[J]. 化工进展, 2018, 37(1): 96-104. |
SHI Bin, WANG Ningling, LI Xiao’en, et al. Impacts of water supply temperature on energy consumption of high back pressure cogeneration system[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 96-104. | |
16 | 徐大懋, 邓德兵, 王世勇, 等. 汽轮机的特征通流面积及弗留格尔公式改进[J]. 动力工程学报, 2010, 30(7): 473-477. |
XU Damao, DENG Debing, WANG Shiyong, et al. Application of characteristic flow area of steam turbines and improvement on Flugel formula[J]. Journal of Chinese Society of Power Engineering, 2010, 30(7): 473-477. | |
17 | 宋之平. 单耗分析的理论和实施[J]. 中国电机工程学报, 1992(4): 17-23. |
SONG Zhiping. Theory and implementation of unit consumption analysis[J]. Proceedings of the CSEE, 1992(4): 17-23. | |
18 | 周少祥, 宋之平, 胡三高, 等. 单耗分析理论与能源利用的效率问题[J]. 中国能源, 2008(2): 42-43, 26. |
ZHOU Shaoxiang, SONG Zhiping, HU Sangao, et al. Energy consumption analysis theory and efficiency of energy utilization[J]. China Energy, 2008(2): 42-43, 26. | |
19 | 武宇, 颜士鑫, 武华. 1000MW火电机组热力系统优化分析[J]. 能源与环境, 2014(1): 45-47. |
WU Yu, YAN Shixin, WU Hua. Optimization of thermal system of 1000MW thermal power unit[J]. Energy & Environment, 2014(1): 45-47. | |
20 | 李恩峰. 单耗分析理论在热电联产中的应用[D]. 北京: 华北电力大学, 2004. |
LI Enfeng. The application of specific consumption analysis theory in CHP[D]. Beijing: North China Electric Power University, 2004. | |
21 | 陈海平, 王忠平, 石志云, 等. 基于单耗理论分析回热系统热经济性[J]. 汽轮机技术, 2012(6): 448-450, 454. |
CHEN Haiping, WANG Zhongping, SHI Zhiyun, et al. Thermal economy of regenerative system based on unit consumption theory[J]. Turbine Technology, 2012(6): 448-450, 454. | |
22 | 李月亲. 兆瓦级槽式太阳能汽轮机通流部分的优化设计[D]. 武汉: 华中科技大学, 2014. |
LI Yueqin. Design and optimization of turbine flow path for megawatt level parabolic trough solar thermal power station[D]. Wuhan: Huazhong University of Science & Technology, 2014. | |
23 | 邓世敏, 迟全虎, 金红光. 汽轮机通流部分改造后机组的回热系统优化[J]. 动力工程, 2004(2): 195-198. |
DENG Shiming, CHI Quanhu, JIN Hongguang. Optimization of the heat regenerative system after the modification of the flow path of the steam turbine[J]. Power Engineering, 2004(2):195-198. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[4] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[9] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[10] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[11] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[15] | 张智琛, 朱云峰, 成卫戍, 马守涛, 姜杰, 孙冰, 周子辰, 徐伟. 高压聚乙烯失控分解研究进展:反应机理、引发体系与模型[J]. 化工进展, 2023, 42(8): 3979-3989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |