1 |
张雁玲, 王红涛, 孟凡飞, 等. 微流体燃料电池发展现状[J]. 化工进展, 2016, 35(1): 65-73.
|
|
ZHANG Y L, WANG H T, MENG F F, et al. Development status of microfluidic fuel cell[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 65-73.
|
2 |
WANG J, REN L, LI L, et al. Microfluidics: a new cosset for neurobiology[J]. Lab on a Chip, 2009, 9(5): 644-652.
|
3 |
DITTRICH P S, MANZ A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 5(3): 210-218.
|
4 |
MARLE L, GREENWAY G M. Microfluidic devices for environmental monitoring[J]. Trends in Analytical Chemistry, 2005, 24(9): 795-802.
|
5 |
SUH Y K, KANG S. A review on mixing in microfluidics[J]. Micromachines, 2010, 1(3): 82-111.
|
6 |
LAUTERBORN W, KURZ T. Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10): 106501.
|
7 |
RASHIDI S, BAFEKR H, VALIPOUR M S, et al. A review on the application, simulation, and experiment of the electrokinetic mixers[J]. Chemical Engineering and Processing—Process Intensification, 2018, 126: 108-122.
|
8 |
HASHIMI A, YU G, REILLY-COLLETTE M, et al. Oscillating bubbles: a versatile tool for lab on a chip applications[J]. Lab on a Chip, 2012, 12(21): 4216-4227.
|
9 |
XU Y, HASHMI A, YU G, et al. Microbubble array for on-chip worm processing[J]. Applied Physics Letters, 2013, 102(2): 023702.
|
10 |
TOVAR A R, PATEL M V, LEE A P. Lateral air cavities for microfluidic pumping with the use of acoustic energy[J]. Microfluidics and Nanofluidics, 2011, 10(6): 1269-1278.
|
11 |
马学虎,梁倩卿,王凯,等.基于微吸收器的CO2吸收过程研究进展[J]. 化工进展, 2018, 37(4): 1229-1246.
|
|
MA X H, LIANG Q Q, WANG K, et al. Progress of CO2 absorption process in micro-absorbers[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1229-1246.
|
12 |
ROGERS P, NEILD A. Selective particle trapping using an oscillating microbubble[J]. Lab on a Chip, 2011, 11(21): 3710-3715.
|
13 |
AHMED D, MAO X, JULURI B K, et al. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles[J]. Microfluidics and Nanofluidics, 2009, 7(5): 727-731.
|
14 |
VOLK A, KÄHLER C J. Size control of sessile microbubbles for reproducibly driven acoustic streaming[J]. Physical Review Applied, 2018, 9(5): 054015.
|
15 |
CHINDAM C, NAMA N, LAPSLEY M IAN, et al. Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices[J]. Journal of Applied Physics, 2013, 114(19): 194503.
|
16 |
赵章风, 张文俊, 牛丽丽, 等. 基于微泡共振的快速微流体声学混合方法研究[J]. 物理学报, 2018, 67(19): 194302.
|
|
ZHAO Z F, ZHANG W J, NIU L L, et al. Microbubble oscillation induced acoustic micromixing in microfluidic device[J]. Acta Physica Sinica, 2018, 67(19): 194302.
|
17 |
ORBAY S, OZCELIK A, LATA J, et al. Mixing high-viscosity fluids via acoustically driven bubbles[J]. Journal of Micromechanics and Microengineering, 2016, 27(1): 015008.
|
18 |
AHMED D, MAO X, SHI J, et al. A millisecond micromixer via single-bubble-based acoustic streaming[J]. Lab on a Chip, 2009, 9(18): 2738-2741.
|
19 |
GUO L. A numerical study on microbubble mixer[D]. Illinois: University of Illinois at Urbana-Champaign, 2014.
|
20 |
DE VELLIS A, GRITSENKO D, LIN Y, et al. Drastic sensing enhancement using acoustic bubbles for surface-based microfluidic sensors[J]. Sensors and Actuators B: Chemical, 2017, 243: 298-302.
|
21 |
WANG C. Microbubble streaming flows for non-invasive particle manipulation and liquid mixing[D]. Illinois: University of Illinois at Urbana-Champaign, 2013.
|
22 |
WANG C, JALIKOP S V, HIGENFELDT S. Efficient manipulation of microparticles in bubble streaming flows[J]. Biomicrofluidics, 2012, 6(1): 012801.
|
23 |
WANG C, RALLABANDI B, HILGENFELDT S. Frequency dependence and frequency control of microbubble streaming flows[J]. Physics of Fluids, 2013, 25(2): 022002.
|
24 |
RALLABANDI B, WANG C, HILGENFELDT S. Two-dimensional streaming flows driven by sessile semicylindrical microbubbles[J]. Journal of Fluid Mechanics, 2014, 739: 57-71.
|
25 |
ERICKSON D, LI D. Influence of surface heterogeneity on electrokinetically driven microfluidic mixing[J]. Langmuir, 2002, 18(5): 1883-1892.
|