1 |
宗弘元,马宇春,刘仲能 . 合成气制混合燃料醇的研究进展 [J]. 化工进展, 2015, 34(5): 1269-1276.
|
|
ZONG H Y , MA Y C , LIU Z N . Research progress of higher alcohols synthesis from syngas [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1269-1276.
|
2 |
SPIVEY J J , EGBEBI A . Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chemical Society Reviews, 2007, 36(9): 1514-1541.
|
3 |
牟明仁,邹立梅,辛德吉,等 . 对《车用乙醇汽油(E10)》修订内容的分析 [J]. 石油化工技术与经济, 2018, 34(1): 15-18.
|
|
MU M R , ZOU L M , XIN D J , et al . Analysis on the revisions of GB 18351—2017 ethanol gasoline for motor vehicles (E10) standard [J]. Techno-Economics in Petrochemicals, 2018, 34(1): 15-18.
|
4 |
张建伟,方茂东 . 从汽车排放控制谈我国汽油质量战略 [J]. 汽车工程, 2006, 28(1): 43-47.
|
|
ZHANG J W , FANG M D . A study on fuel quality strategy for vehicle emission control [J]. Automotive Engineering, 2006, 28(1): 43-47.
|
5 |
SUBRAMANI V , GANGWAL S K . A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol [J]. Energy & Fuels, 2008, 22(2): 814-839.
|
6 |
FARRELL A E , PLEVIN R J , TURNER B T , et al . Ethanol can contribute to energy and environmental goals [J]. Science, 2006, 311(5760): 506-513.
|
7 |
CLEVELAND C J , HALL C A , HERENDEEN R A . Energy returns on ethanol production [J]. Science, 2006, 312(5781): 1746-1753.
|
8 |
ZHOU W , KANG J , CHENG K , et al . Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the Intermediate dimethyl ether [J]. Angewandte Chemie: International Edition, 2018, 57(37): 12012-12017.
|
9 |
宋庆锋,张勇,曾清湖 . 合成气直接转化制乙醇工艺路线的技术经济分析 [J]. 工业催化, 2013, 21(6): 17-21.
|
|
SONG Q F , ZHANG Y , ZENG Q H . Techno-economic analysis of production process of syngas to ethanol [J]. Industrial Catalysis, 2013, 21(6): 17-21.
|
10 |
陈丽,倪春林,张晓伟,等 . 工业乙醇合成技术的比较 [J]. 山东化工, 2018, 47(1): 47-49.
|
|
CHEN L , NI C L , ZHANG X W , et al . Comparison of industrial ethanol synthesis technologies [J]. Shandong Chemical Industry, 2018, 47(1): 47-49.
|
11 |
黄守莹,王悦,马新宾,等 . 合成气经二甲醚/乙酸甲酯制无水乙醇的研究进展 [J]. 化工学报, 2016, 67(1): 240-247.
|
|
HUANG S Y , WANG Y , MA X B , et al . Advances in indirect synthesis of ethanol from syngas via dimethyl ether/methyl acetate [J]. CIESC Jorunal, 2016, 67(1): 240-247.
|
12 |
杨贺勤,刘志成,谢在库 . 绿色化工技术研究新进展 [J]. 化工进展, 2016, 35(6): 1575-1586.
|
|
YANG H Q , LIU Z C , XIE Z K . Review of recent development of green chemical technologies [J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1575-1586.
|
13 |
丁云杰 . 煤经合成气制乙醇和混合高碳伯醇的研究进展 [J]. 煤化工, 2018, 46(1): 1-5.
|
|
DING Y J . Research progress of synthesis of ethanol and mixed high carbon primary alcohols from syngas derived from coal [J]. Coal Chemical Industry, 2018, 46(1): 1-5.
|
14 |
顾佳杰 . 醋酸(酯)加氢制乙醇生产技术及市场分析 [J]. 上海化工, 2015, 40(8): 38-41.
|
|
GU J J . The production techniques and market analysis of acetic acid (acetate) to ethanol by hydrogenation [J]. Shanghai Chemical Industry, 2015, 40(8): 38-41.
|
15 |
CHEUNG P , BHAN A , SUNLEY G , et al . Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites [J]. Journal of Catalysis, 2007, 245(1): 110-123.
|
16 |
CHEUNG P , BHAN A , SUNLEY G J , et al . Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites [J]. Angewandte Chemie: International Edition, 2006, 45(10): 1617-1620.
|
17 |
BHAN A , ALLIAN A D , SUNLEY G J , et al . Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls [J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924.
|
18 |
BHAN A , IGLESIA E . A link between reactivity and local structure in acid catalysis on zeolites [J]. Accounts of Chemical Research, 2008, 41(4): 559-567.
|
19 |
GOUNDER R , IGLESIA E . The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis [J]. Accounts of Chemical Research, 2012, 45(2): 229-238.
|
20 |
BORONAT M , MARTINEZ-SANCHEZ C , LAW D, et al . Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO [J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323.
|
21 |
BORONAT M , MARTINEZ C , CORMA A . Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite [J]. Physical Chemistry Chemical Physics, 2011, 13(7): 2603-2612.
|
22 |
MOLINER M , MARTINEZ C , CORMA A . Multipore zeolites: synthesis and catalytic applications [J]. Angewandte Chemie: International Edition, 2015, 54(12): 3560-3579.
|
23 |
RASMUSSEN D B , CHRISTENSEN J M , TEMEL B , et al . Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite [J]. Angewandte Chemie: International Edition, 2015, 54(25): 7261-7264.
|
24 |
HE T , REN P , LIU X , et al . Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy [J]. Chemical Communications, 2015, 51(94): 16868-16870.
|
25 |
ZHOU H , ZHU W , SHI L , et al . In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite [J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 1-9.
|
26 |
CAI K , HUANG S , LI Y , et al . Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2027-2034.
|
27 |
LI Y , HUANG S , CHENG Z , et al . Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR [J]. Journal of Catalysis, 2018, 365: 440-449.
|
28 |
LIU Z , YI X , WANG G , et al . Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion [J]. Journal of Catalysis, 2019, 369: 335-344.
|
29 |
赵娜,牛君阳,李新刚,等 . 预处理条件及金属离子改性对H-MOR分子筛的DME羰基化性能影响 [J]. 化工学报, 2015, 66(9): 3504-2510.
|
|
ZHAO N , NIU J Y , LI X G , et al . Influence of pretreatment and metal cation modification of H-MOR zeolite on performance of DME carbonylation [J]. CIESC Jorunal, 2015, 66(9): 3504-2510.
|
30 |
李秀杰,刘盛林,徐龙伢,等 . 乙酸甲酯合成路线及催化剂研究进展 [J]. 化工进展, 2012, 31(s1): 163-167.
|
|
LI X J , LIU S L , XU L Y , et al . Advances in synthesis routes and catalysts of methyl acetate [J]. Chemical Industry and Engineering Progress, 2012, 31(s1): 163-167.
|
31 |
LIU J , XUE H , HUANG X , et al . Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine [J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738.
|
32 |
XUE H , HUANG X , DITZEL E , et al . Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate [J]. Chinese Journal of Catalysis, 2013, 34(8): 1496-1503.
|
33 |
XUE H , HUANG X , DITZEL E , et al . Dimethyl ether carbonylation to methyl acetate over nanosized mordenites [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510-11515.
|
34 |
WANG M X , HUANG J L , LV J , et al . Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether [J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1538.
|
35 |
ZHAN H , HUANG S , LI Y , et al . Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR [J]. Catalysis Science & Technology, 2015, 5(9): 4378-4389.
|
36 |
LIU Y , ZHAO N , XIAN H , et al . Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether [J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8398-8403.
|
37 |
ZHOU H , ZHU W , SHI L , et al . Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate [J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968.
|
38 |
LI L , WANG Q , LIU H , et al . Preparation of spherical mordenite zeolite assemblies with excellent catalytic performance for dimethyl ether carbonylation [J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32239-32246.
|
39 |
FENG X , YAO J , LI H , et al . A brand new zeolite catalyst for carbonylation reaction [J]. Chemical Communications, 2019, 55(8): 1048-1051.
|
40 |
YE R P , LIN L , LI Q , et al . Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon-oxygen bonds [J]. Catalysis Science & Technology, 2018, 8(14): 3428-3449.
|
41 |
杨天宇,曹祖宾,韩冬云,等 . 乙酸甲酯催化加氢制乙醇工艺 [J]. 化工进展, 2015, 34(7): 1872-1877.
|
|
YANG T Y , CAO Z B , HAN D Y , et al . Process research on the catalytic hydrogenation of methyl acetate to ethanol[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1872-1877.
|
42 |
SANTIAGO M A N , SĂNCHEZ-CASTILLO M A , CORTRIGHT R D , et al . Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper [J]. Journal of Catalysis, 2000, 193(1): 16-28.
|
43 |
SAN X, ZHANG Y , SHEN W , et al . New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst [J]. Energy & Fuels, 2009, 23(5): 2843-2844.
|
44 |
WANG D , YANG G , MA Q , et al . Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate [J]. ACS Catalysis, 2012, 2(9): 1958-1966.
|
45 |
WANG D , SUN X , XING C , et al . Copper nanoparticles decorated inside or outside carbon nanotubes used for methyl acetate hydrogenation [J]. Journal of Nanoscience and Nanotechnology, 2013, 13(2): 1274-1277.
|
46 |
JU I B , JEON W , PARK M J , et al . Kinetic studies of vapor-phase hydrogenolysis of butyl butyrate to butanol over Cu/ZnO/Al2O3 catalyst [J]. Applied Catalysis A: General, 2010, 387(1/2): 100-106.
|
47 |
LIU Y , MURATA K , INABA M , et al . Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation, and methyl acetate hydrogenolysis [J]. Fuel Processing Technology, 2013, 110: 206-213.
|
48 |
WANG S , GUO W , WANG H , et al . Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production [J]. New Journal of Chemistry, 2014, 2014, 38(7): 2792-2800.
|
49 |
WANG Y , SHEN Y , ZHAO Y , et al . Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds [J]. ACS Catalysis, 2015, 5(10): 6200-6208.
|
50 |
YE C L , GUO C L , ZHANG J L . Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol [J]. Fuel Processing Technology, 2016, 143: 219-224.
|
51 |
HUANG X , MA M , MIAO S , et al . Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: reaction mechanism and structural evolution [J]. Applied Catalysis A: General, 2017, 531: 79-88.
|
52 |
韩海波,王有和,阎子峰,等 . MOR/SBA-15复合分子筛的合成、表征及其催化性能评价 [J]. 无机化学, 2018, 34(8): 1477-1482.
|
|
HAN H B , WANG Y H , YAN Z F , et al . Synthesis, characterization and catalytic performance of MOR/SBA-15 composite zeolite [J]. Chinese Journal of Inorganic Chemistry, 2018, 34(8): 1477-1482.
|