化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2252-2261.DOI: 10.16085/j.issn.1000-6613.2018-1515
叶凯1,2(),梁风1,2,3(),姚耀春1,2,马文会1,2,3,杨斌1,2,3,戴永年1,2,3
收稿日期:
2018-07-22
修回日期:
2018-12-04
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
梁风
作者简介:
<named-content content-type="corresp-name">叶凯</named-content>(1995—),男,硕士研究生,研究方向为电弧等离子体制备纳米材料。E-mail:<email>18672008847@163.com</email>。|梁风,副教授,硕士生导师,研究方向为等离子体技术制备纳米材料、高能量密度储能器件等。E-mail:<email>liangfeng@kmust.edu.cn</email>。
基金资助:
Kai YE1,2(),Feng LIANG1,2,3(),Yaochun YAO1,2,Wenhui MA1,2,3,Bin YANG1,2,3,Yongnian DAI1,2,3
Received:
2018-07-22
Revised:
2018-12-04
Online:
2019-05-05
Published:
2019-05-05
Contact:
Feng LIANG
摘要:
介绍了等离子体法、液相还原法、电火花放电腐蚀法和高能球磨法等几种纳米镍粉的常见制备方法,总结了各种方法的优缺点,归纳了在纳米镍粉的制备过程中存在着难以实现规模化生产、纯度难以控制等问题;其研究趋势是通过分析其成核与生长机理,找到最佳合成条件以实现纳米镍粉的可控制备。另外,本文重点叙述了纳米镍粉在多层陶瓷电容器(MLCC)和催化剂等领域的应用现状,从应用的角度阐述了各个领域对纳米镍粉的需求。在纳米镍粉的应用中,存在着易氧化及同其他材料匹配性差等问题,需要通过表面改性等手段优化其应用性能。最后,文章指出将纳米镍粉的应用与其制备方法相结合,用最合适的方法制备出符合应用要求的纳米镍粉,是未来纳米镍粉的研究趋势。
中图分类号:
叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 纳米镍粉的制备与应用的发展趋势[J]. 化工进展, 2019, 38(05): 2252-2261.
Kai YE, Feng LIANG, Yaochun YAO, Wenhui MA, Bin YANG, Yongnian DAI. Development trend of preparation and application of nickel nano-powder[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2252-2261.
制备方法 | 优点 | 缺点 |
---|---|---|
等离子体法 | 产物纯度高、尺寸小、粒径分布均匀、形状与尺寸可控、制备过程对环境友好 | 设备要求高、规模化生产难度高 |
液相还原法 | 原料来源广泛、尺寸小、粒径分布均匀、形状与尺寸可控 | 环境污染、产率较低、分散性较差 |
电火花放电腐蚀法 | 设备简单、产物纯度高、粒径分布均匀 | 尺寸较大、产物易氧化 |
高能球磨法 | 操作简单、成本低、产量高、粒径可控 | 产物纯度较低、粒径分布不够均匀、粉末易发生团聚 |
表1 各种纳米镍粉制备方法的优缺点总结
制备方法 | 优点 | 缺点 |
---|---|---|
等离子体法 | 产物纯度高、尺寸小、粒径分布均匀、形状与尺寸可控、制备过程对环境友好 | 设备要求高、规模化生产难度高 |
液相还原法 | 原料来源广泛、尺寸小、粒径分布均匀、形状与尺寸可控 | 环境污染、产率较低、分散性较差 |
电火花放电腐蚀法 | 设备简单、产物纯度高、粒径分布均匀 | 尺寸较大、产物易氧化 |
高能球磨法 | 操作简单、成本低、产量高、粒径可控 | 产物纯度较低、粒径分布不够均匀、粉末易发生团聚 |
1 | VOISIN C , FATTI N D , CHRISTOFILOS D ,et al . Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles[J]. Journal of Physical Chemistry B,2017,105(12):2264-2280. |
2 | ARAKHA M ,JHA S . Synthesis and characterization of nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2018,322(8):1015-1019. |
3 | FLAURAUD V , MASTRANGELI M , BERNASCONI G D ,et al . Nanoscale topographical control of capillary assembly of nanoparticles[J]. Nature Nanotechnology,2017,12(1):73-80. |
4 | GONZALEZ I , JESUS D , CANIZALES E ,et al . Comparison of the surface state of Ni nanoparticles used for methane catalytic decomposition[J]. Journal of Physical Chemistry C,2016,116(40):21577-21587. |
5 | WANG C , ZHANG X M , QIAN X F ,et al . Preparation of nanocrystalline nickel powders through hydrothermal-reduction method[J]. Materials Research Bulletin,1998,33(12):1747-1751. |
6 | NAMDEO M , SAXENA S , TANKHIWALE R ,et al . Magnetic nanoparticles for drug delivery applications[J]. Journal of Nanoscience and Nanotechnology,2017,8(7):3247-3271. |
7 | ZHANG H , ZOU G , LIU L , et al . Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging[J]. Journal of Materials Science,2017,52(6):3375-3387. |
8 | GERSHMAN S , RAITSES Y . Unstable behavior of anodic arc discharge for synthesis of nanomaterials[J]. Journal of Physics D: Applied Physics,2016,49(34):345201-345222. |
9 | WEI Z , XIA T , BAI L ,et al . Efficient preparation for Ni nanopowders by anodic arc plasma[J]. Materials Letters,2006,60(6):766-770. |
10 | CHO Y S, MOON J W , CHUNG K C ,et al . Synthesis of nickel and copper nanopowders by plasma arc evaporation[J]. Journal of Korean Powder Metallurgy Institute,2013,20(6):411-424. |
11 | LIANG F , TANAKA M , CHOI S ,et al . Investigation of the relationship between arc-anode attachment mode and anode temperature for nickel nanoparticle production by a DC arc discharge[J]. Journal of Physics D: Applied Physics,2016,49(12):125201-125217. |
12 | BAI L , FAN J , PENG H ,et al . RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate[J]. Journal of Alloys and Compounds,2009,481(1):563-567. |
13 | CHAU J L H . Synthesis of Ni and bimetallic FeNi nanopowders by microwave plasma method[J]. Materials Letters,2007,61(13):2753-2756. |
14 | ABDEL-AAL E A , MALEKZADEH S M , RASHAD M M ,et al . Effect of synthesis conditions on preparation of nickel metal nanopowders via hydrothermal reduction technique[J]. Powder Technology,2007,171(1):63-68. |
15 | YU Y ,MA H, TIAN X X ,et al . Synthesis and electromagnetic absorption properties of micro-nano nickel powders prepared with liquid phase reduction method[J]. Journal of Advanced Dielectrics,2016,6(3):1650025-1650032. |
16 | TIENTONG J , GARCIA S , THURBER C ,et al . Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction[J]. Journal of Nanotechnology,2014(4):1-6. |
17 | TSENG K H , CHUNG M Y , CHIU J L . Suspension stability of nano-Au and nano-Ag colloids prepared by electrical spark discharge method[J]. Journal of Cluster Science,2017,28(100):1-16. |
18 | 李忠丽,李翔龙,文玉华,等 . 电火花腐蚀制备Ni粉[J]. 微细加工技术,2007,2(2):57-59. |
LI Z L , LI X L , WEN Y H ,et al . Preparation of nickel powder by spark-eroded method[J]. Microfabrication Technology,2007,2(2):57-59. | |
19 | LIU Y , ZHU K , LI X ,et al . Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water[J]. Advanced Powder Technology,2018,29(4):863-873. |
20 | ZHANG J , ZHANG C , LIU Z ,et al . High-performance ball-milled SiO x , anodes for lithium ion batteries[J]. Journal of Power Sources,2017,339:86-92. |
21 | PANIGRAHI B B ,DAS K, GODKHINDI M M . Dilatometry of ball milled nickel nano powder during non-isothermal sintering[J]. Science of Sintering,2007,39(1):25-29. |
22 | ZHAO Y , SHEN T D , ZHANG J . High P-T, nano-mechanics of polycrystalline nickel[J]. Nanoscale Research Letters,2007,2(10):476-491. |
23 | 路承杰,张振忠,周剑秋,等 . 高能球磨法制备纳米晶Ni粉的研究[J]. 铸造技术,2007,28(6):775-778. |
LU C J , ZHANG Z Z , ZHOU J Q ,et al . Preparation of nancrystalline nickel powders by high energy ball milling[J]. Foundry Technology,2007,28(6):775-778. | |
24 | CAI Z , WANG X , LUO B ,et al . Multiscale design of high-voltage multilayer energy-storage ceramic capacitors[J]. Journal of the American Ceramic Society,2018,101(4):1607-1615. |
25 | KISHI H , MIZUNO Y , CHAZONO H . Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives[J]. Japanese Journal of Applied Physics,2003,42(1):1-15. |
26 | WANG P , XU H , ZHU G ,et al . An efficient method to achieve MLCC miniaturization and ensure its reliability[J]. Journal of Materials Science Materials in Electronics,2016,28(5):1-5. |
27 | JEON J ,LEE H, PU B ,et al . Prediction of impedance characteristics of MLCC using multiconductor transmission line theory[J]. IEEE Transactions on Electromagnetic Compatibility,2016,58(6):1760-1771. |
28 | HIROSE S , USUI T , CROSSLEY S ,et al . Progress on electrocaloric multilayer ceramic capacitor development[J]. APL Materials,2016,4(6):27-43. |
29 | WANG S H , CHAI Y L ,LEE W H . A novel approach to sintering (Ba, Ca) (Ti, Zr)O3 multilayer ceramic capacitors with Ni electrodes[J]. Journal of the European Ceramic Society,2012,32(8):1711-1723. |
30 | 郭顺,王东新,李军义 . MLCC用超细镍粉的制备方法及发展趋势[J]. 材料导报,2012, 26(2):212-215. |
GUO S , WANG D X , LI J Y . Preparation methods and development tendency of ultrafine nickel powder used in MLCC[J]. Materials Review,2012, 26(2):212-215. | |
31 | GONG H , WANG X , TIAN Z ,et al . Interfacial diffusion behavior in Ni-BaTiO3 MLCCs with ultra-thin active layers[J]. Electronic Materials Letters, 2014,10(2):417-421. |
32 | SADA T , FUJIKAWA N . Analysis of insulation resistance degradation in Ni-BaTiO3 multilayer ceramic capacitors under highly accelerated life test[J]. Japanese Journal of Applied Physics,2017,56(10):104-108. |
33 | WANG P , XU H R , ZHU G S ,et al . An efficient method to achieve MLCC miniaturization and ensure its reliability[J]. Journal of Materials Science:Materials in Electronics,2016,28(5):1-5. |
34 | SALEEM M , SONG J S , JEONG S J ,et al . Dielectric response on microwave sintered BaTiO3, composite with Ni nanopowder and paste[J]. Materials Research Bulletin,2015,64:380-385. |
35 | DAS V, PADMANABAN S , VENKITUSAMY K ,et al . Recent advances and challenges of fuel cell based power system architectures and control-A review[J]. Renewable and Sustainable Energy Reviews,2017,73:10-18. |
36 | AKHAIRI M A F , KAMARUDIN S K . Catalysts in direct ethanol fuel cell (DEFC): an overview[J]. International Journal of Hydrogen Energy,2016,41(7):4214-4228. |
37 | LAN R , TAO S . Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells[J]. Journal of Power Sources,2011,196(11):5021-5026. |
38 | KRISHNAMURTHY G , SHIVAKUMAR M S . Electroless deposition of nanosized nickel over graphite substrate with better coating coverage and catalytic activity for fuel cell application[J]. Journal of Applied Electrochemistry,2017,47(4):519-529. |
39 | GHASEMI M , WAN R W D , RAHIMNEJAD M ,et al . Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells[J]. International Journal of Hydrogen Energy,2013,38(22):9533-9540. |
40 | REN Z , WU Z , SONG W ,et al . Low temperature propane oxidation over Co3O4, based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability[J]. Applied Catalysis B:Environmental,2016,180:150-160. |
41 | KUMAR D , MANGALVEDEKAR H A , MAHAJAN S K . Nano-nickel catalytic dehydrogenation of ammonia borane[J]. Materials for Renewable and Sustainable Energy,2014,3(2):23-30. |
42 | WEI L I , ZHU J H , QI J H . Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J]. Journal of Fuel Chemistry and Technology,2007,35(2):176-180. |
43 | WRONSKI Z S , CARPENTER G J C , CZUJKO T ,et al . A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides[J]. International Journal of Hydrogen Energy,2011,36(1):1159-1166. |
44 | TSAI T Y , LI Y A , SU H C ,et al . Low temperature growth of carbon nanotubes using Ni nanopowder mixed with Ag-paste as catalyst[J]. Diamond and Related Materials,2008,17(4):594-597. |
45 | BAI Y , ZHANG J , YANG G , et al . Insight into the nanoparticle growth in supported Ni catalysts during the early stage of CO hydrogenation reaction: the important role of adsorbed CO molecules[J]. ACS Catalysis, 2018, 8: 6367-6374. |
46 | KHORT A , PODBOLOTOV K , GARCÍA R S ,et al . One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: the fuel effect[J]. Journal of Solid State Chemistry,2017,253:270-276. |
47 | EWING S J , LAN R , XU X X ,et al . Synthesis of dendritic nano-sized nickel for use as anode material in an alkaline membrane fuel cell[J]. Fuel Cells,2010,10(1):72-76. |
48 | LO C H, TSUNG T T , CHEN L C . Ni Nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS)[J]. Jsme International Journal,2005,48(4):750-755. |
49 | GAO R , JIANG Y , ABDELAZIZ S . All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers[J]. Optics Letters,2013,38(9):1539-1541. |
50 | JIANG Z , LI S F , ZHAO F Q ,et al . Research on the combustion properties of propellants with low content of nano metal powders[J]. Propellants Explosives Pyrotechnics,2010,31(2):139-147. |
51 | BROSTOW W , BROZYNSKI M , DATASHVILI T ,et al . Strong thermoplastic elastomers created using nickel nanopowder[J]. Polymer Bulletin,2011,67(8):1671-1696. |
52 | GAIN A K , CHAN Y C , YUNG W K C . Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages[J]. Materials Science and Engineering B,2009,162(2):92-98. |
53 | QI H P , CAO H L , HUANG Y D . Synthesis of flowerlike nickel particles and their microwave absorbing properties[J]. Journal of Central South University,2014,21(8):3007-3012. |
54 | PARVEEN S , MISRA R , SAHOO S K . Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging[J]. Nanomedicine Nanotechnology Biology and Medicine,2012,8(2):147-166. |
55 | 郝晓光 . 多层陶瓷电容器用镍内电极浆料的现状与展望[J]. 电子元件与材料,2017,36(2):1-5. |
HAO X G . Current situation and development prospect of nickel inner electrode paste used in MLCC[J]. Electronic Components and Materials,2017,36(2):1-5. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 788
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |