化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2222-2232.DOI: 10.16085/j.issn.1000-6613.2018-1506
朱子翼(),张英杰,董鹏,孟奇,曾晓苑,章艳佳,吉金梅,和秋谷,黎永泰,李雪(
)
收稿日期:
2018-07-22
修回日期:
2019-01-11
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
李雪
作者简介:
<named-content content-type="corresp-name">朱子翼</named-content>(1991—),男,硕士,研究方向为先进二次电池及相关能源材料。E-mail:<email>471096347@qq.com</email>。|李雪,博士,副教授,研究方向为先进二次电池及相关能源材料,包括锂离子电池和钠离子电池。E-mail:<email>438616074@qq.com</email>。
基金资助:
Ziyi ZHU(),Yingjie ZHANG,Peng DONG,Qi MENG,Xiaoyuan ZENG,Yanjia ZHANG,Jinmei JI,Qiugu HE,Yongtai LI,Xue LI(
)
Received:
2018-07-22
Revised:
2019-01-11
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xue LI
摘要:
负极材料的研究是钠离子电池实现商业化生产的关键要素之一,近年来已经取得了突破性进展。但是较大半径的钠离子在嵌/脱过程中对负极材料结构的影响非常大,进而导致可逆容量迅速降低。本文系统综述了钠离子电池负极材料的最新研究成果,阐述了碳基材料、钛基化合物、合金材料、金属化合物和有机化合物5类负极材料的制备工艺,并分析了这些材料的性能特点:碳基材料的研发技术成熟,但比容量和倍率性能有待提高;钛基化合物的结构性能良好,倍率性能出色,但存在比容量较低的缺点;合金材料和金属化合物都具有较高的理论比容量,但循环性能较差;有机化合物的研发尚处于起步阶段,有待深入研究。基于现有的研究基础,总结了材料的改性方法和取得的效果,并展望了钠离子电池负极材料的研究方向,分析指出表面碳包覆可以提升材料的电子传导性,纳米结构可以缩短钠离子的传输途径,多孔形貌有利于电解质对材料的浸润,而元素掺杂可以提升材料的反应活性,最终获得高性能钠离子电池负极材料。
中图分类号:
朱子翼, 张英杰, 董鹏, 孟奇, 曾晓苑, 章艳佳, 吉金梅, 和秋谷, 黎永泰, 李雪. 高性能钠离子电池负极材料的研究进展[J]. 化工进展, 2019, 38(05): 2222-2232.
Ziyi ZHU, Yingjie ZHANG, Peng DONG, Qi MENG, Xiaoyuan ZENG, Yanjia ZHANG, Jinmei JI, Qiugu HE, Yongtai LI, Xue LI. Research progress of anode materials for high performance sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2222-2232.
1 | HWANG J Y , MYUNG S T , SUN Y K . Sodium-ion batteries: present and future[J]. Chemical Society Reviews,2017,47:3529-3614. |
2 | 张英杰, 朱子翼, 董鹏, 等 . 钠离子电池碳基负极材料的研究进展[J]. 化工进展,2017,36(11):4106-4115. |
ZHANG Y J , ZHU Z Y , DONG P , et al . Research progress of carbon-based anode materials for sodium ion batteries[J]. Chemical Industry and Engineering Progress,2017,36(11):4106-4115. | |
3 | PAN H , HU Y S , CHEN L . Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science,2013,6:2338-2360. |
4 | YABUUCHI N , KUBOTA K , DAHBI M , et al . Research development on sodium-ion batteries[J]. Chemical Reviews,2014,114:11636-11682. |
5 | ZHU Z , CHENG F , HU Z , et al . Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources,2015,293:626-634. |
6 | WEN Y , HE K , ZHU Y , et al . Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications,2014,5:4033. |
7 | LUO X F , YANG C H , PENG Y Y , et al . Graphene nanosheets, carbon nanotubes, graphite and activated carbon as anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:10320-10326. |
8 | WANG X L , LI G , HASSAN F M , et al . Sulfur covalently bonded graphene with large capacity and high rate for high-performance odium-ion batteries anodes[J]. Nano Energy,2015,15:746-754. |
9 | JIAN Z , BOMMIER C , LUO L , et al . Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials,2017,29:2314-2320. |
10 | HAO M , XIAO N , WANG Y , et al . Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology,2018,177:328-335. |
11 | WANG Y , XIAO N , WANG Z , et al . Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal,2018,342:52-56. |
12 | WANG Y , XIAO N , WANG Z , et al . Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries[J]. Carbon,2018,135:187-194. |
13 | ZHANG N , LIU Q , CHEN W , et al . High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources,2018,378:331-337. |
14 | LI Z , CHEN Y , JIAN Z , et al . Defective hard carbon anode for Na-ion batteries[J]. Chemistry of Materials,2018,30:4536-4542. |
15 | ZHU Z Y , LIANG F , ZHOU Z R , et al . Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(4):1513-1522. |
16 | LIU R , LIY, WANG C , et al . Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries[J]. Fuel Processing Technology,2018,178:35-40. |
17 | YANG C , XIONG J , OU X, et al . A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode[J]. Materials Today Energy,2018,8:37-44. |
18 | CHEN T , LIU Y , PAN L , et al . Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A,2014,2:4117-4121. |
19 | WANG Z , QIE L, YUAN L , et al . Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon,2013,55:328-334. |
20 | XU Y , LOTFABAD E M , WANG H , et al . Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries[J]. Chemical Communications,2013,49:8973-8975. |
21 | ZHANG R , WANG Y , ZHOU H , et al . Mesoporous TiO2 nanosheets anchored on graphene for ultra-long life Na-ion batteries[J]. Nanotechnology,2018,29(22):225401. |
22 | WANG J , LIU G , FAN K , et al . N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes[J]. Journal of Colloid and Interface Science,2018,517:134-143. |
23 | SUN Y , ZHAO L , PAN H , et al . Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communications,2013,4:1870. |
24 | LEE Y, KIM D W, LEE J K, et al . Carbon-coated Li4Ti5O12 as anode material for sodium-ion batteries[J]. Journal of Nanoscience and Nanotechnology,2015,15(9):7049-7053. |
25 | GE Y , JIANG H , FU K , et al . Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries[J]. Journal of Power Sources,2014,272:860-865. |
26 | 郭晋芝, 万放, 吴兴隆, 等 . 钠离子电池工作原理及关键电极材料研究进展[J]. 分子科学学报,2016,32:265-279. |
GUO J Z , WAN F , WU X L , et al . Sodium-ion batteries: work mechanism and the research progress of key electrode materials[J]. Journal of Molecular Science,2016,32:265-279. | |
27 | ZOU W , FAN C , LI J . Sodium titanate/carbon (Na2Ti3O7/C) nanofibers via electrospinning technique as the anode of sodium-ion batteries[J]. Chinese Journal of Chemistry,2017,35(1):79-85. |
28 | CHEN S , PANG Y , LIANG J , et al . Red blood cell-like carbon hollow sphere anchored ultrathin Na2Ti3O7 nanosheets as long cyclic and high rate-performance anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2018,6:13164-13170. |
29 | XIA J , ZHAO H , PANG W K , et al . Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anode for sodium-ion battery[J]. Chemical Science,2018,9:3421-3425. |
30 | XIE F , ZHANG L , SU D , et al . Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance[J]. Advanced Materials,2017,29(24):1700989. |
31 | WANG Y , YU X , XU S , et al . A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communications,2013,4:2365. |
32 | 王鹤洋 . 钛基钠离子电池负极材料的合成与表征[D]. 合肥:中国科学技术大学,2017. |
WANG H Y . Syntheses and characterization of titanium based anode materials for sodium-ion batteries[D]. Hefei: University of Science and Technology of China,2017. | |
33 | DELMAS C , CHERKAOUI F , NADIRI A , et al . A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 [J]. Materials Research Bulletin,1987,22:631-639. |
34 | LIANG J , FAN K , WEI Z , et al . Porous NaTi2(PO4)3@C nanocubes as improved anode for sodium-ion batteries[J]. Materials Research Bulletin,2018,99:343-348. |
35 | XU D , WANG P , YANG R . Nitrogen-doped carbon decorated NaTi2(PO4)3 composite as an anode for sodium-ion batteries with outstanding electrochemical performance[J]. Ceramics International,2018,44:7159-7164. |
36 | SLATER M D , KIM D, LEE E, et al . Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958. |
37 | YUE C , YU Y , SUN S , et al . High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries[J]. Advanced Functional Materials,2015,25(9):1386-1392. |
38 | LI W , YANG Z , LI M , et al . Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity[J]. Nano Letters,2016,16:1546-1553. |
39 | LIU S , XU H , BIAN X ,et al .Hollow nanoporous red phosphorus as an advanced anode for sodium –ion batteries [J].Journal of Materials Chemistry A,2018,6:12992-12998. |
40 | CHOI J S , LEE H J, HA J K, et al . Synthesis and electrochemical properties of amorphous carbon coated Sn anode material for lithium ion batteries and sodium ion batteries[J]. Journal of Nanoscience and Nanotechology,2018,18:6459-6462. |
41 | HAN Q , GENG D , HAN Z , et al . Preparation of carbon cloth supported Sn thin film for structural lithium-ion battery anodes[J]. Journal of Electroanalytical Chemistry,2018,822:17-22. |
42 | YUAN Y , JAN S, WANG Z , et al . A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries[J]. Journal of Materials Chemistry A,2018,6:5555-5559. |
43 | ZHU J , SHANG C , WANG Z , et al . SnS/SnSb@C nanofibers with enhanced cycling stability via vulcanization as an anode for sodium-ion batteries[J]. ChemElectroChem,2018,5:1098-1104. |
44 | 向兴德, 卢艳莹, 陈军 . 钠离子电池先进功能材料的研究进展[J]. 化学学报,2017,75:154-162. |
XIANG X D , LU Y Y , CHEN J . Advance and prospect of functional materials for sodium ion batteries[J]. Acta Chimica Sinica,2017,75:154-162. | |
45 |
ZHAO D , XIE D , LIU H , et al . Flexible α-Fe2O3 nanorod electrode materials for sodium-ion batteries with excellent cycle performance[J]. Functional Materials Letters,2018,doi: 10.1142/S1793604718400027.
DOI |
46 | 周训富, 赵付双 . 钠离子电池锡基负极材料的研究进展[J]. 电池,2016,46:172-175. |
ZHOU XF , ZHAO FS . Research progress in tin-based anode materials for sodium-ion battery[J]. Battery Bimonthly,2016,46:172-175. | |
47 | LIU J , WANG S , KRAVCHYK K , et al . SnP nanocrystals as anode material for Na-ion battery[J]. Journal of Materials Chemistry A,2018,6:10958-10966. |
48 | WEI S , CHU S , LU Q , et al . Optimization of SnO2 nanoparticles confined in a carbon matrix towards applications as high-capacity anodes in sodium-ion batteries[J]. Chemistryselect,2018,3(14):4015-4022. |
49 | ZHENG T , LI G , DONG J , et al . Self-assembled Mn-doped MoS2 hollow nanotubes with significantly enhanced sodium storage for high-performance odium-ion batteries[J]. Inorganic Chemistry Frontiers,2018,5:1587-1593. |
50 | TANG Y , ZHAO Z , WANG Y , et al . Ultrasmall MoS2 nanosheets mosaiced into nitrogen-doped hierarchical porous carbon matrix for enhanced sodium storage performance[J]. Electrochimica Acta,2017,225:369-377. |
51 | ZHANG Z , ZHAO J , XU M , et al . Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries[J]. Nanotechnology,2018,29:335401. |
52 | ZHAO W , GUO C , LI C M . Lychee-like FeS2@FeSe2 core-shell microspheres anode in sodium ion batteries for large capacity and ultralong cycle life[J]. Journal of Materials Chemistry A,2017,5:19195-19202. |
53 | WAN F , WU X L , GUO J Z , et al . Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries[J]. Nano Energy,2015,13:450-457. |
54 | WANG S , WANG L , ZHU Z , et al . All organic sodium-ion batteries with Na4C8H2O6 [J]. Angewandte Chemie International Edition,2014,126:6002–6006. |
55 | 黄宗令, 王丽平, 牟成旭, 等 . 对苯二甲酸镁作为钠离子电池的有机负极材料[J]. 物理化学学报,2014,30:1787-1793. |
HUANG Z L , WANG L P , MOU C X, et al . Magnesium terephthalate as an organic anode material for sodium ion batteries[J]. Acta Physico-Chimica Sinica,2014,30:1787-1793. | |
56 | WU X , MA J, MA Q, et al . A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:13193-13197. |
57 | LUO C , WANG J , FAN X , et al . Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries[J]. Nano Energy,2015,13:537-545. |
[1] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[2] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[3] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[4] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[5] | 王庆宏, 姜晨旭, 王鑫, 余美琪, 朱帅, 李一鸣, 陈春茂. 天然矿物催化氧化水中难降解有机污染物研究进展[J]. 化工进展, 2023, 42(1): 417-434. |
[6] | 齐亚兵, 贾宏磊. 熔融结晶技术分离纯化有机化合物的研究进展[J]. 化工进展, 2023, 42(1): 373-385. |
[7] | 包淼清. 苯乙烯产品的浙江制造质量标准研究[J]. 化工进展, 2022, 41(S1): 648-655. |
[8] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[9] | 刘汉飞, 朱昊, 李双涛, 季雨凡, 黄益平, 黄晶晶, 倪嵩波, 倪泽雨. 凹凸棒负载型催化剂的制备及处理低浓度有机物效能[J]. 化工进展, 2022, 41(9): 5103-5108. |
[10] | 许亚兵, 王宝山, 汪光宗, 张洋. 生物电化学系统对制药废水中难生化有机物的降解[J]. 化工进展, 2022, 41(9): 5055-5064. |
[11] | 杨福, 刘梦婷, 马淑兰, 魏祎暄, 欧锐, 王旭裕, 李露露, 张武翔, 潘建明. 挥发性有机化合物催化消除前沿技术及研究进展[J]. 化工进展, 2022, 41(9): 4801-4812. |
[12] | 刘星园, 张永锋, 肖凯, 高境泽. 分子筛材料在VOCs吸附中的研究进展[J]. 化工进展, 2022, 41(5): 2504-2510. |
[13] | 王锡民, 魏潇然, 冯瑛, 黄国勇, 王春霞. 碳基全固态离子选择性电极材料研究进展[J]. 化工进展, 2022, 41(10): 5456-5464. |
[14] | 陈琦, 王文涛, 张志鹏, 晏太红. 共价有机框架材料对放射性核素吸附的研究进展[J]. 化工进展, 2021, 40(S2): 241-255. |
[15] | 赵迎新, 麻泽浩, 杨知凡, 杨凯超, 邱潇洁. 污泥生物炭催化高级氧化过程进展[J]. 化工进展, 2021, 40(7): 3984-3994. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2830
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1562
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |