化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3984-3994.DOI: 10.16085/j.issn.1000-6613.2020-1658
收稿日期:
2020-08-19
修回日期:
2020-11-11
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
赵迎新
作者简介:
赵迎新(1985—),女,副教授,博士生导师,研究方向为污水低碳处理与资源化。E-mail:基金资助:
ZHAO Yingxin(), MA Zehao, YANG Zhifan, YANG Kaichao, QIU Xiaojie
Received:
2020-08-19
Revised:
2020-11-11
Online:
2021-07-06
Published:
2021-07-19
Contact:
ZHAO Yingxin
摘要:
作为废水处理过程的副产物,污泥的高效处理处置是环保领域的难题之一。通过高温热解将污泥转化为生物炭是一种有效的污泥资源化途径。污泥生物炭不仅可作为“吸附剂”吸附去除水体中污染物,还可作为新型“催化剂”高效催化高级氧化过程以降解水体中的有机污染物。本文综述了近些年来国内外关于污泥生物炭在高级氧化技术领域尤其是催化过硫酸盐(PS)、过氧化氢(H2O2)、臭氧(O3)以及光催化等氧化过程降解有机污染物的研究进展。通过探讨污泥生物炭的表面官能团、掺杂改性杂原子、负载过渡金属及其氧化物以及与其他技术耦合催化降解有机污染物的研究现状,进一步揭示污泥生物炭催化作用的关键活性位点以及催化机理。最后提出该领域目前面临的主要问题及未来发展方向,为污泥生物炭进一步实现高附加值资源化利用提供重要参考。
中图分类号:
赵迎新, 麻泽浩, 杨知凡, 杨凯超, 邱潇洁. 污泥生物炭催化高级氧化过程进展[J]. 化工进展, 2021, 40(7): 3984-3994.
ZHAO Yingxin, MA Zehao, YANG Zhifan, YANG Kaichao, QIU Xiaojie. Progress of advanced oxidation process catalyzed by sludge biochar[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3984-3994.
生物炭 | 掺杂改性 | 活性位点 | PS类型 | 活性氧(ROS) | 效果 | 参考文献 |
---|---|---|---|---|---|---|
NSC | 尿素污泥共热解 | —C=O,吡啶氮,石墨氮 | PMS | 1O2, | 30min完全去除AO7 | Sun等[ |
MnFe2O4-SAC | MnFe2O4负载 | —OH,—COOH,Mn,Fe | PDS | 橙黄G去除率达94% | Li等[ | |
Fe-ADSBC | 二硫酸铁/零价铁 | FeO,C—O—Fe | PDS | 60min降解94.1%SMT | Chen等[ | |
Mn-SDBC | 氧化锰负载 | Fe,Mn | PDS | 90.38%橙黄G去除率 | Fan等[ | |
生物炭复合催化剂 | Mg/Fe层状双氢氧化物(LDHs) | Fe,Mg | PMS | ·OH,·OOH和1O2 | 92.2%泰乐菌,81.9%罗丹明B | Huang等[ |
ASMn-Nb | MnCl2掺杂,氨热解 | N-炭,MnOx,氧缺陷, 羰基 | PDS,PMS | 40min去除100%酸性橙 | Mian等[ | |
MS-biochar | 氮掺杂 | FexOy、N和石墨C | PDS | SO4-·,·OH | 82.24%四环素去除率 | Yu等[ |
表1 掺杂改性污泥生物炭活化PS降解污染物类型
生物炭 | 掺杂改性 | 活性位点 | PS类型 | 活性氧(ROS) | 效果 | 参考文献 |
---|---|---|---|---|---|---|
NSC | 尿素污泥共热解 | —C=O,吡啶氮,石墨氮 | PMS | 1O2, | 30min完全去除AO7 | Sun等[ |
MnFe2O4-SAC | MnFe2O4负载 | —OH,—COOH,Mn,Fe | PDS | 橙黄G去除率达94% | Li等[ | |
Fe-ADSBC | 二硫酸铁/零价铁 | FeO,C—O—Fe | PDS | 60min降解94.1%SMT | Chen等[ | |
Mn-SDBC | 氧化锰负载 | Fe,Mn | PDS | 90.38%橙黄G去除率 | Fan等[ | |
生物炭复合催化剂 | Mg/Fe层状双氢氧化物(LDHs) | Fe,Mg | PMS | ·OH,·OOH和1O2 | 92.2%泰乐菌,81.9%罗丹明B | Huang等[ |
ASMn-Nb | MnCl2掺杂,氨热解 | N-炭,MnOx,氧缺陷, 羰基 | PDS,PMS | 40min去除100%酸性橙 | Mian等[ | |
MS-biochar | 氮掺杂 | FexOy、N和石墨C | PDS | SO4-·,·OH | 82.24%四环素去除率 | Yu等[ |
1 | 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 48(2): 1-5. |
DAI X H. Current situation and thinking of sludge treatment and disposal in China[J]. Water & Wastewater Engineering, 2012, 48(2): 1-5. | |
2 | HII K, BAROUTIAN S, PARTHASARATHY R, et al. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment[J]. Bioresource Technology, 2014, 155: 289-299. |
3 | 张云霞, 王瑞, 王立彤, 等. 填埋方式对污泥填埋稳定性的影响[J]. 中国给水排水, 2011, 27(11): 75-77. |
ZHANG Y X, WANG R, WANG L T, et al. Influence of landfill modes on stabilization of sludge landfill[J]. China Water & Wastewater, 2011, 27(11): 75-77. | |
4 | 余忆玄, 陈虹, 王晓萌, 等. 我国城市污泥中的有机污染物污染状况及其海洋倾倒处置研究[J]. 海洋环境科学, 2013, 32(5): 652-656. |
YU Y X, CHEN H, WANG X M, et al. Pollution characteristics of organic contaminant in sludge from wastewater treatment plants and sludge ocean dumping disposal in China[J]. Marine Environmental Science, 2013, 32(5): 652-656. | |
5 | 李辉, 吴晓芙, 蒋龙波, 等. 城市污泥焚烧工艺研究进展[J]. 环境工程, 2014, 32(6): 88-92. |
LI H, WU X F, JIANG L B, et al. Progress in study on the incineration technology of municipal sewage sludge[J]. Environmental Engineering, 2014, 32(6): 88-92. | |
6 | 陈文和, 邓明佳, 罗辉, 等. 污泥直接干化产生的恶臭及挥发性有机物特征研究[J]. 环境科学, 2014, 35(8): 2897-2902. |
CHEN W H, DENG J M, LUO H, et al. Characteristics of odors and VOCs from sludge direct drying process[J]. Environmental Science, 2014, 35(8): 2897-2902. | |
7 | 刘莹. 城市污水处理厂污泥处理处置现状与技术研究[J].节能与环保, 2019(1): 78-79. |
LIU Y. Present situation and technology of sludge treatment and disposal in municipal sewage treatment plant[J]. Energy Conservation and Environment Protection, 2019(1): 78-79. | |
8 | 周天水, 崔荣煜, 王东田, 等. 市政污泥和工业污泥资源化处置利用技术[J]. 环境科学与技术, 2016, 39(S2): 251-255. |
ZHOU T S, CUI R Y, WANG D T, et al. Resource utilization and disposal technology of municipal and industrial sludge[J]. Environmental Science & Technology, 2016, 39(S2): 251-255. | |
9 | 张俊杰, 邵敬爱, 黄河洵, 等. 利用污泥制备活性炭及其吸附特性的研究进展[J]. 化工进展, 2017, 36(10): 3876-3886. |
ZAHNG J J, SHAO J A, HUANG H X, et al. Review on the preparation of activated carbon from sludge and its adsorption characteristics[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3876-3886. | |
10 | 杜明明, 卢聪, 王凤超, 等. 污泥活性炭的制备及其在环境治理方面的应用[J]. 应用化工, 2018, 47(12): 2777-2780, 2785. |
DU M M, LU C, WANG F C, et al. Preparation of activated carbon from sludge and its application in environmental treatment[J]. Applied Chemical Industry, 2018, 47(12): 2777-2780, 2785. | |
11 | AGRAFIOTI E, BOURAS G, KALDERIS D, et al. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78. |
12 | REN X, LIANG B, LIU M, et al. Effects of pyrolysis temperature, time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide[J]. Bioresource Technology, 2012, 125: 300-304, |
13 | 王定美, 王跃强, 袁浩然, 等. 水热炭化制备污泥生物炭的碳固定[J]. 化工学报, 2013, 64(7): 2625-2632. |
WANG D M, WANG Y Q, YUAN H R, et al. Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013, 64(7): 2625-2632. | |
14 | WANG L, CHANG Y, LI A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 423-440. |
15 | 范皓翔, 院士杰, 戴晓虎. 污泥衍生生物炭研究进展[J]. 净水技术, 2019, 38(3): 32-37, 44. |
FAN H X, YUAN S J, DAI X H. Research progress of sludge derived biochar[J]. Water Purification Technology, 2019, 38(3): 32-37, 44. | |
16 | 黄燕宁, 王晓, 张宏杰, 等. 污泥生物炭的研究进展[J]. 功能材料, 2017, 48(9): 9024-9029. |
HUANG Y N, WANG X, ZHANG H J, et al. Research progress on sewage sludge-based biochar[J]. Journal of Functional Materials, 2017, 48(9): 9024-9029. | |
17 | JARIA G, SILVA C P, OLIVEIRA J A B P, et al. Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design[J]. Journal of Hazardous Materials, 2019, 370: 212-218. |
18 | YAN L, LIU Y, ZHANG Y, et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2020, 297: 122381. |
19 | ZHANG J, SHAO J, JIN Q, et al. Sludge-based biochar activation to enhance Pb(Ⅱ) adsorption[J]. Fuel, 2019, 252: 101-108. |
20 | ROS A, LILLO-RÓDENAS M A, FUENTE E, et al. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere, 2006, 65(1): 132-140. |
21 | 杨招艺, 陶家林, 王瑞露, 等. 热解温度对污泥碳基材料表面性质及吸附性能的影响[J]. 环境工程学报, 2019, 13(11): 2711-2721. |
YANG Z Y, TAO J L, WANG R L, et al. Effect of pyrolysis temperature on surface properties and adsorption performance of sludge biochar[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2711-2721. | |
22 | SILVA T L, RONIX A, PEZOTI O, et al. Mesoporous activated carbon from industrial laundry sewage sludge: adsorption studies of reactive dye Remazol Brilliant Blue R[J]. Chemical Engineering Journal, 2016, 303: 467-476. |
23 | RIO S, FAUR-BRASQUET C, LE COQ L, et al. Production and characterization of adsorbent materials from an industrial waste[J]. Adsorption, 2005, 11(1): 793-798. |
24 | 翟世民, 柳荣展, 郭雪松, 等. 污水处理厂污泥制备生物炭及应用的研究进展[J]. 化工进展, 2016, 35(S2): 363-368. |
ZHAI S M, LIU R Z, GUO X S, et al. Researches progress and application development of sewage sludge biochar[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 363-368. | |
25 | 姚宏, 沈燕, 袁鑫, 等. 污泥活性炭理化性质表征及吸附抗生素效果研究[J]. 环境科学与技术, 2012, 35(2): 154-158. |
YAO H, SHEN Y, YUAN X, et al. Research of antibiotics adsorption by sludge activated carbon[J]. Environmental Science & Technology, 2012, 35(2): 154-158. | |
26 | 谭雪梅, 吉芳英, 傅敏, 等. ZnCl2/CuCl2复合活化剂制备污泥活性炭及其分形研究[J]. 环境工程, 2012, 30(3): 85-88. |
TAN X M, JI F Y, FU M, et al. Preparation and fractal research of activated carbon from sludge with ZnCl2/CuCl2 as activating agent[J]. Environmental Engineering, 2012, 30(3): 85-88. | |
27 | LI S, WANG P, ZHENG H, et al. Adsorption and one-step degradation-regeneration of 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid using biochar-based BiFeO3 nanocomposites[J]. Bioresource Technology, 2017, 245:1103-1109. |
28 | 刘亚利, 贺月莛, 汤慧俐, 等. 污泥活性炭的制备、改性及应用研究进展[J]. 应用化工, 2020, 49(6): 1527-1531. |
LIU Y L, HE Y T, TANG H L, et al. Study on preparation, modification and application of sludge activated carbon[J]. Applied Chemical Industry, 2020, 49(6): 1527-1531. | |
29 | 王静松, 刘杰, 唐蕾. 污泥基生物质炭在水处理中的应用[J]. 化工管理, 2020(7): 113-114. |
WANG J S, LIU J, TANG L. Application of wasted sludge-based biochar in water treatment[J]. Chemical Enterprise Management, 2020(7): 113-114. | |
30 | 黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5): 2461-2470. |
HUANG Z H, JI Z Y, CHEN X, et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2461-2470. | |
31 | REN Y, LIN L, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B: Environmental, 2015, 165: 572-578. |
32 | WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
33 | YU J, TANG L, PANG Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364: 146-159. |
34 | MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178-188. |
35 | LIANG C, LIN Y, SHIN W. Persulfate regeneration of trichloroethylene spent activated carbon[J]. Journal of Hazardous Materials, 2009, 168(1): 187-192. |
36 | DUAN X G, SUN H Q, WANG S B. Metal-free carbocatalysis in advanced oxidation reactions[J]. Accounts of Chemical Research, 2018, 51(3): 678-687. |
37 | SUN H Q, LIU S Z, ZHOU G L, et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5466-5471. |
38 | WANG S Z, WANG J L. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater[J]. Chemical Engineering Journal, 2019, 256: 350-358. |
39 | SHAO P H, TIAN J Y, YANG F, et al. Catalytic oxidation: identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants[J]. Advanced Functional Materials, 2018, 28(13): 1870081. |
40 | HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. |
41 | HU W R, TAN J T, PAN G H, et al. Direct conversion of wet sewage sludge to carbon catalyst for sulfamethoxazole degradation through peroxymonosulfate activation[J]. Science of the Total Environment, 2020, 728: 138853. |
42 | DUAN X G, SUN H Q, SHAO Z P, et al. Nonradical reactions in environmental remediation processes: uncertainty and challenges[J]. Applied Catalysis B: Environmental, 2018, 224: 973-982. |
43 | DUAN X G, SUN H Q, WANG S B. Comment on “activation of persulfate by graphitized nanodiamonds for removal of organic compounds”[J]. Environmental Science & Technology, 2017, 51(9): 5351-5352. |
44 | CHEN Y D, DUAN X G, ZHANG C F, et al. Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection[J]. Chemical Engineering Journal, 2020, 384: 123244. |
45 | ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. |
46 | ZHU S J, WANG W, XU Y P, et al. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2019, 365: 99-110. |
47 | WEI J, LIU Y T, ZHU Y H, et al. Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar[J]. Chemosphere, 2020, 247: 125854. |
48 | DUAN X G, O’DONNELL K, SUN H Q, et al. Catalysis: sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions[J]. Small, 2015, 11(25): 244-251. |
49 | MIAN M M, LIU G. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: understanding the role of active sites and mechanism[J]. Chemical Engineering Journal, 2020, 392: 856-863. |
50 | SUN H W, PENG X X, ZHANG S P, et al. Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water[J]. Bioresource Technology, 2017, 241: 244-251. |
51 | LI Y,YANG Z Q, ZHANG H G, et al. Fabrication of sewage sludge-derived magnetic nanocomposites as heterogeneous catalyst for persulfate activation of Orange G degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 856-863. |
52 | CHEN Y D, BAI S W, LI R X, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact[J]. Environment International, 2019, 126: 302-308. |
53 | FAN Z X, ZHANG X, LI M, et al. Activation of persulfate by manganese oxide-modified sludge-derived biochar to degrade Orange G in aqueous solution[J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 70-79. |
54 | HUANG Z Y, WANG T L, SHEN M X, et al. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst[J]. Chemical Engineering Journal, 2019, 369: 784-792. |
55 | MIAN M M, LIU G, FU B, et al. Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2019, 255: 117765. |
56 | 张志旭, 罗琳, 许振成. 磁性污泥炭在四环素降解中的应用研究[J]. 农业环境科学学报, 2017, 36(4): 777-782. |
ZHANG Z X, LUO L, XU Z C. Application research of degradation of tetracycline on sewage sludge derived magnetic carbon[J]. Journal of Agro-Environment Science, 2017, 36(4): 777-782. | |
57 | WANG J, LIAO Z, IFTHIKAR J, et al. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process[J]. Chemosphere, 2017, 185: 754-763. |
58 | WANG X, GU L, ZHOU P, et al. Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-naphthol[J]. Chemical Engineering Journal, 2017, 324: 203-215. |
59 | YIN R, GUO W, WANG H, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 589-599. |
60 | DIAO Z, DONG F, YAN L, et al. Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: reactivity and mechanism[J]. Journal of Hazardous Materials, 2020, 384: 121385. |
61 | LUO K, YANG Q, PANG Y, et al. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2019, 374: 520-530. |
62 | LING J K, YU T Z, MING X L, et al. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOⅡ[J]. Environmental Pollution, 2016, 216: 568-574. |
63 | ZHANG F, WU K, ZHOU H, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater[J]. Journal of Environmental Management, 2018, 224: 376-386. |
64 | ZHOU G, FANG F, CHEN Z, et al. Facile synthesis of paper mill sludge-derived heterogeneous catalyst for the Fenton-like degradation of methylene blue[J]. Catalysis Communications, 2015, 62: 71-74. |
65 | ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment[J]. Chemosphere, 2018, 191: 64-71. |
66 | TU Y, TIAN S, KONG L, et al. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst[J]. Chemical Engineering Journal, 2012, 185: 44-51. |
67 | WEN H, GU L, YU H, et al. Radical assisted iron impregnation on preparing sewage sludge derived Fe/carbon as highly stable catalyst for heterogeneous Fenton reaction[J]. Chemical Engineering Journal, 2018, 352: 837-846. |
68 | LI J, PAN L J, YU G W, et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation[J]. Science of the total environment, 2019, 654: 1284-1292. |
69 | GU L, ZHU N, GUO H, et al. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon[J]. Journal of Hazardous Materials, 2013, 246/247: 145-153. |
70 | LYU Y, ZHANG J, ASGODOM M E, et al. Study on the degradation of accumulated bisphenol S and regeneration of magnetic sludge-derived biochar upon microwave irritation in the presence of hydrogen peroxide for application in integrated process[J]. Bioresource Technology, 2019, 293: 122072. |
71 | GU L, LI C, WEN H, et al. Facile synthesis of magnetic sludge-based carbons by using electro-Fenton activation and its performance in dye degradation[J]. Bioresource Technology, 2017, 241: 391-396. |
72 | YUAN S, DAI X. Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction[J]. Applied Catalysis B: Environmental, 2014, 154/155: 252-258. |
73 | 史宇滨, 陈子文, 鲍玥, 等. 造纸污泥活性炭在催化臭氧氧化降解橙黄Ⅱ中的应用研究[J]. 浙江大学学报(理学版), 2017, 44(5): 568-575. |
SHI Y B, CHEN Z W, BAO Y, et al. Application of activated carbon from papermaking sludge in catalytic ozonation of orange Ⅱ[J]. Journal of Zhejiang University(Science Edition), 2017, 44(5): 568-575. | |
74 | 李璐, 封莉, 张立秋. 污泥基活性炭表面官能团对其催化臭氧氧化活性的影响[J]. 环境化学, 2014, 33(6): 937-942. |
LI L, FENG L, ZHANG L Q. Influences of surface functional groups of sludge-corncob activated carbon on catalytic ozonation activity[J]. Environmental Chemistry, 2014, 33(6): 937-942. | |
75 | XU J, YU Y, DING K, et al. Heterogeneous catalytic ozonation of hydroquinone using sewage sludge-derived carbonaceous catalysts[J]. Water Science and Technology, 2018, 77(5/6): 1410-1417. |
76 | 李璐, 封莉, 张立秋. 污泥基活性炭催化臭氧氧化对氯苯甲酸效能[J]. 环境工程学报, 2014, 8(9): 3613-3619. |
LI L, FENG L, ZHANG L Q. Ozonation degradation of para-chlorobenzoic acid by sludge-corncob activated carbon[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3613-3619. | |
77 | WANG Y, ZHU X X, FENG D Q, et al. Biochar-supported FeS/Fe3O4 composite for catalyzed Fenton-type degradation of ciprofloxacin[J]. Catalysts, 2019, 9(12):106 |
78 | 王红娟, 齐飞, 封莉, 等. 污泥基活性炭催化臭氧氧化降解水中微量布洛芬的效能研究[J]. 环境科学, 2012, 33(5): 1591-1596. |
WANG H J, QI F, FENG L, et al. Catalytic ozonation of ibuprofen in aqueous solution by activated carbon made from sludge and corn cob[J]. Environmental Science, 2012, 33(5): 1591-1596. | |
79 | 陈美玲, 颜家保, 胡杰, 等. 钢渣污泥陶粒催化剂催化臭氧深度处理炼油废水[J]. 环境工程学报, 2019, 13(6): 1299-1304. |
CHEN M L, YAN J B, HU J, et al. Advanced treatment of refinery wastewater by catalytic ozonation with steel slag sludge ceramsite catalyst[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1299-1304. | |
80 | 卢思颖, 孙中恩, 封莉, 等. T-FMSAC制备及其催化臭氧氧化去除p-CBA效能研究[J]. 中国环境科学, 2017, 37(6): 2139-2144. |
LU S Y, SUN Z E, FENG L, et al. Preparation of T-FMSAC and its catalytic ozonation performance on the removal of p-CBA in water[J]. China Environmental Science, 2017, 37(6): 2139-2144. | |
81 | 游洋洋, 卢学强, 许丹宇, 等. 复合污泥基活性炭催化臭氧氧化降解水中罗丹明B[J]. 工业水处理, 2015, 35(1): 56-59. |
YOU Y Y, LU X Q, XU D Y, et al. The catalytic ozonation of sludge-based composite activated carbon for the degradation of RhB in aqueous solution[J]. Industrial Water Treatment, 2015, 35(1): 56-59. | |
82 | HUANG Y X, SUN Y R, XU Z H, et al. Removal of aqueous oxalic acid by heterogeneous catalytic ozonation with MnOx/sewage sludge-derived activated carbon as catalysts[J]. Science of the Total Environment, 2017, 575: 50-57. |
83 | JAMIL T S, SHARAF EL-DEEN S E A. Removal of persistent tartrazine dye by photodegradation on TiO2 nanoparticles enhanced by immobilized calcinated sewage sludge under visible light[J]. Separation Science and Technology, 2016, 51(10): 1744-1756. |
84 | ZHU X, YUAN W, LANG M, et al. Novel methods of sewage sludge utilization for photocatalytic degradation of tetracycline-containing wastewater[J]. Fuel, 2019, 252:148-156. |
85 | MIAN M M, LIU G. Sewage sludge-derived TiO2/Fe/Fe3C-biochar composite as an efficient heterogeneous catalyst for degradation of methylene blue[J]. Chemosphere, 2018, 215: 101-114. |
86 | CHEN N, SHANG H, TAO S, et al. Visible light driven organic pollutants degradation with hydrothermally carbonized sewage sludge and oxalate via molecular oxygen activation[J]. Environmental Science & Technology, 2018, 52(21): 12656-12666. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[12] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[13] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[14] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[15] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |