化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1785-1793.DOI: 10.16085/j.issn.1000-6613.2018-0880
戴国琛1,2(),张泽天1,2,高文伟1,2,李正军1,2()
收稿日期:
2018-04-28
修回日期:
2018-07-25
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
李正军
作者简介:
<named-content content-type="corresp-name">戴国琛</named-content>(1993—),男,硕士研究生,主要从事生物质材料的综合利用研究。E-mail: <email>dgcchen@163.com</email>。|李正军,教授,主要从事生物质材料的综合利用研究。E-mail: <email>lizhengjun@scu.edu.cn</email>。
基金资助:
Guochen DAI1,2(),Zetian ZHANG1,2,Wenwei GAO1,2,Zhengjun LI1,2()
Received:
2018-04-28
Revised:
2018-07-25
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhengjun LI
摘要:
采用吸附材料进行油水分离是经济且非常有效的方法。吸附材料主要有无机材料、合成高分子材料和天然有机纤维材料等。相比较而言,天然有机纤维材料为可再生生物质资源,来源广泛、生物降解性好,可有效防止二次污染,具有良好的发展潜力,备受关注。本文首先简要介绍了油水乳液稳定性的影响因素,然后综述了油水分离材料的分离原理、构建方法和分离性能等研究进展,并总结了油水乳液分离材料的表征及其分离性能的评价指标。特别地,重点总结了天然有机纤维基吸附材料分离油水乳液的研究进展。最后指出研究智能响应型天然有机纤维基油水乳液分离吸附材料是重要的发展方向。
中图分类号:
戴国琛, 张泽天, 高文伟, 李正军. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(04): 1785-1793.
Guochen DAI, Zetian ZHANG, Wenwei GAO, Zhengjun LI. Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1785-1793.
基质材料 | 改性材料 | 低表面能构建方法 | 粗糙度构建方法 | 乳液类型 | 通量(最大) /L·m-2·h-1·bar-1 | 分离效率 (最大)/% | 参考文献 |
---|---|---|---|---|---|---|---|
磁性石墨烯/CNTs微粒膜 | 聚苯乙烯 | 原位化学法 | 微粒修饰 | W/O | 约500 | 99.96 | [ |
碳纳米膜 | 聚苯乙烯 | 原位化学法 | 蚀刻法 | W/O | 5000 | 99.94 | [ |
PVDF/PAA-g-PVDF膜 | 聚乙亚胺 | 原位化学法 | 原位增长法 | O/W | — | 99.97 | [ |
PP膜 | 硅烷 | 浸渍法 | 微粒修饰 | W/O | — | — | [ |
聚丙烯腈膜 | 盐酸羟胺 | 相分离法 | — | O/W | 3806 | — | [ |
滤纸 | 聚二乙烯基苯 | 原位化学法 | — | W/O | — | 99.94 | [ |
表1 油水乳液分离2D膜材料
基质材料 | 改性材料 | 低表面能构建方法 | 粗糙度构建方法 | 乳液类型 | 通量(最大) /L·m-2·h-1·bar-1 | 分离效率 (最大)/% | 参考文献 |
---|---|---|---|---|---|---|---|
磁性石墨烯/CNTs微粒膜 | 聚苯乙烯 | 原位化学法 | 微粒修饰 | W/O | 约500 | 99.96 | [ |
碳纳米膜 | 聚苯乙烯 | 原位化学法 | 蚀刻法 | W/O | 5000 | 99.94 | [ |
PVDF/PAA-g-PVDF膜 | 聚乙亚胺 | 原位化学法 | 原位增长法 | O/W | — | 99.97 | [ |
PP膜 | 硅烷 | 浸渍法 | 微粒修饰 | W/O | — | — | [ |
聚丙烯腈膜 | 盐酸羟胺 | 相分离法 | — | O/W | 3806 | — | [ |
滤纸 | 聚二乙烯基苯 | 原位化学法 | — | W/O | — | 99.94 | [ |
吸附材料 | 制造方法 | 乳液类型 | 通量(最大)/L·m-2·h-1 | 分离效率/% | 参考文献 |
---|---|---|---|---|---|
碳气凝胶 | 氧化炉干燥碳化法 | W/O | 995 | 96.00 | [ |
二乙烯基苯/SiO2微粒 | 聚合诱导相分离法 | W/O | — | 99.73 | [ |
O/W | 99.90 | ||||
聚偏二氟乙烯气凝胶 | 蒸汽诱导相转化 | W/O | 约1240 | 99.99 | [ |
高分子刷改性PU海绵① | 浸渍法 | W/O | — | — | [ |
乙酸乙酯改性三聚氰胺海绵① | — | W/O | 155000 | 99.98 | [ |
苯乙烯和丙烯酸丁酯共聚物① | 静电纺丝 | O/W | — | — | [ |
改性纤维素海绵 | 3-巯基丙酸改性 | O/W | — | 98.60 | [ |
纤维素和壳聚糖复合气凝胶 | 硬脂酸钠改性 壳聚糖自组装 | W/O | — | — | [ |
硬脂酸改性PU海绵② | 浸渍法 | O/W | — | — | [ |
棕榈酸改性聚吡咯覆盖的PU海绵② | 气相沉积法 | O/W | — | — | [ |
硅烷改性棉纤维② | 浸渍法 | O/W | — | 92.80 | [ |
表2 油水乳液分离3D吸附材料
吸附材料 | 制造方法 | 乳液类型 | 通量(最大)/L·m-2·h-1 | 分离效率/% | 参考文献 |
---|---|---|---|---|---|
碳气凝胶 | 氧化炉干燥碳化法 | W/O | 995 | 96.00 | [ |
二乙烯基苯/SiO2微粒 | 聚合诱导相分离法 | W/O | — | 99.73 | [ |
O/W | 99.90 | ||||
聚偏二氟乙烯气凝胶 | 蒸汽诱导相转化 | W/O | 约1240 | 99.99 | [ |
高分子刷改性PU海绵① | 浸渍法 | W/O | — | — | [ |
乙酸乙酯改性三聚氰胺海绵① | — | W/O | 155000 | 99.98 | [ |
苯乙烯和丙烯酸丁酯共聚物① | 静电纺丝 | O/W | — | — | [ |
改性纤维素海绵 | 3-巯基丙酸改性 | O/W | — | 98.60 | [ |
纤维素和壳聚糖复合气凝胶 | 硬脂酸钠改性 壳聚糖自组装 | W/O | — | — | [ |
硬脂酸改性PU海绵② | 浸渍法 | O/W | — | — | [ |
棕榈酸改性聚吡咯覆盖的PU海绵② | 气相沉积法 | O/W | — | — | [ |
硅烷改性棉纤维② | 浸渍法 | O/W | — | 92.80 | [ |
1 | DUBANSKY B , WHITEHEAD A , MILLER J T , et al .Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident gulf killifish (fundulus grandis)[J]. Sci. Technol., 2013, 47(10): 5074-5082. |
2 | CHAN Y J , CHONG M F , CHUNGLIM L , et al . A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J]. Chemical Engineering Journal, 2009, 155(1/2): 1-18. |
3 | WANG B , LIANG W X , GUO Z G , et al . Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a newstrategy beyond nature[J]. Chem. Soc. Rev., 2015, 44(1): 336-361. |
4 | TADROS T , IZQUIERDO P , ESQUENA J , et al . Formation and stability of nanoemulsions[J]. Adv. Colloid Interface Sci., 2014, 108(10): 303-318. |
5 | CHANDHARY J P , NATARAJ S K , GOGDA A , et al . Bio-based superhydrophilic foam membranes for sustainable oil-water separation[J]. Green Chem., 2014, 16(10): 4552-4558. |
6 | LIU M J , WANG S T , WEI Z X , et al . Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Adv. Mater., 2009, 21(6): 665-669. |
7 | XIN B , HAO J . Reversibly switchable wettability[J]. Chemical Society Reviews, 2010, 39(2): 769-782. |
8 | FENG X J , FENG L , JIN M H , et al . Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. J. Am. Chem. Soc., 2004, 126(1): 62-63. |
9 | SUN T L , WANG G J , FENG L , et al . Responsive switching between superhydrophobicity and superhydrophilicity[J]. Angew. Chem. Int. Ed., 2004, 43(3): 357-360. |
10 | XU L , CHEN W , MULCHANDANI A , et al . Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie, 2010, 117(37): 6163-6166. |
11 | YU X , WANG Z , JIANG Y , et al . Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity[J]. Advanced Materials, 2010, 17(10): 1289-1293. |
12 | CHENG M , LIU Q , JU G , et al . Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface[J]. Advanced Materials, 2013, 26(2): 306-310. |
13 |
ZHANG L B , ZHANG Z H , WANG P . Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation[J]. NPG Asia Materials, 2012, 4. DOI:org/10.1038/am2014.14.
DOI URL |
14 | CAO Y , LIU N , FU C , et al . Thermo and pH dual-responsive materials for controllable oil/water separation[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2026-2030. |
15 | WANG J T , HAN F L , LIANG B , et al . Hydrothermal fabrication of robustly superhydrophobic cotton fibers for efficient separation of oil/water mixtures and oil-in-water emulsions[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 174-183. |
16 | MENG G , PENG H , WU J , et al . Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation[J]. Fibers & Polymers, 2017, 18(4): 706-712. |
17 |
DU W N , HAN X N , LI Z J , et al . Oil sorption behaviors of porous polydimethylsiloxane modified collagen fiber matrix[J]. Journal of Applied Polymer Science, 2015, 132(44): DOI:10.1002/app.42727..
DOI URL |
18 | 杜卫宁, 韩晓娜, 李正军, 等 . 天然有机纤维吸油材料表征及吸油性能影响因素[J]. 中国皮革, 2015, 44(9): 39-44. |
DU W N , HAN X N , LI Z J , et al . Characterization of nature organic fiber oil absorption material and influence factors of performmance[J]. China Leather, 2015, 44(9): 39-44. | |
19 |
DU W N , DAI G C , WANG B C , et al . Biodegradable porous organosilicone-modified collagen fiber matrix: synthesis and high oil absorbency[J]. Journal of Applied Polymer Science, 2018, DOI: 10.1002/APP.46264.
DOI URL |
20 | GE J , ZHAO H Y , ZHU H W , et al . Advanced sorbents for oil‐spill cleanup: recent advances and future perspectives[J]. Advanced Materials, 2016, 28(47): 10459-10490. |
21 | PENG Y B , GUO F , WEN Q Y , et al . A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation[J]. Separation & Purification Technology, 2017, 184: 72-78. |
22 | CHEN X L , LIANG Y N , TANG X Z , et al . Additive-free poly (vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption[J]. Chemical Engineering Journal, 2017, 308: 18-26. |
23 | 王忠明, 廖学品, 石碧 . 单宁改性皮胶原纤维膜用于油水分离的研究[J]. 高校化学工程学报, 2008, 22(3): 150-154. |
WANG Z M , LIAO X P , SHI B . Separation of oil from water by tannin modification collagen fiber membrane[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(3): 150-154. | |
24 | BU Z , ZANG L , ZHANG Y , et al . Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material[J]. RSC Advances, 2017, 7(41): 25334-25340. |
25 | SHI Z , ZHANG W , ZHANG F , et al . Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Advanced Materials, 2013, 25(17): 2422-2427. |
26 | WANG G , ZENG Z , WU X , et al . Three-dimensional structured sponge with high oil wettability for the clean-up of oil contaminations and separation of oil-water mixtures[J]. Polymer Chemistry, 2014, 5(20): 5942-5948. |
27 | KANSARA A M , CHAUDHRI S G , SINGH P S . A facile one-step preparation method of recyclable superhydrophobic polypropylene membrane for oil-water separation[J]. RSC Advances, 2016, 6(66): 61129-61136. |
28 | YANG H C , LIAO K J , HUANG H , et al . Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10225-10230. |
29 | LI Y , ZHANG Z , GE B , et al . A versatile and efficient approach to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions[J]. Separation & Purification Technology, 2016, 176: 1-7. |
30 | WANG G , HE Y , WANG H , et al . A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation[J]. Green Chemistry, 2015, 17(5): 3093-3099. |
31 | WU Z , LI Y , ZHANG L , et al . Thiol-ene click reaction on cellulose sponge and its application for oil/water separation[J]. RSC Advances, 2017, 7(33): 20147-20151. |
32 | KHOPADE A J , CARUSO F . Investigation of the factors influencing the formation of dendrimer/polyanion multilayer films[J]. Langmuir, 2002, 18(20): 7669-7676. |
33 | ZANG L , MA J, LV D , et al . A core-shell fiber-constructed pH-responsive nanofibrous hydrogel membrane for efficient oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(36): 19398-19405. |
34 | WU J , JIANG Y , JIANG D , et al . The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation[J]. Materials Letters, 2015, 160: 384-387. |
35 | CHENG B , LI Z , LI Q , et al . Development of smart poly(vinylidene fluoride)-graft-poly (acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J]. Journal of Membrane Science, 2017, 534: 1-8. |
36 | LIU Y , ZHANG K , SON Y, et al . A smart switchable bioinspired copper foam responding to different pH droplets for reversible oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(6): 2603-2612. |
37 | ZHU H , CHEN D , LI N , et al . Graphene foam with switchable oil wettability for oil and organic solvents recovery[J]. Advanced Functional Materials, 2015, 25(4): 597-605. |
38 | LI J J , ZHOU Y N , LUO Z H . Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation[J]. Chemical Engineering Journal, 2017, 322: 693-701. |
39 | XIANG Y , SHEN J , WANG Y , et al . A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water[J]. RSC Advances, 2015, 5(30): 23530-23539. |
40 | GIRIFALACO L A , GOOD R J . A theory for the estimation of surface and interfacial energies. Ⅰ. Derivation and application to interfacial tension[J]. J. Phys. Chem., 1957, 61(7): 904-909. |
41 | HU L , GAO S , DING X , et al . Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions[J]. ACS Nano, 2015, 9(5): 4835-4842. |
42 | WANG J , ZHENG Y . Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method[J]. Separation and Purification Technology, 2017, 181: 183-191. |
43 | YIN J , LI X , ZHOU J , et al . Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity[J]. Nano Letters, 2013, 13(7): 3232-3236. |
44 | HWANG H S , KIM N H, LEE S G, et al . Facile fabrication of transparent superhydrophobic surfaces by spray deposition[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2179-2183. |
45 | SASMAL A K , MONDAL C , SINHA A K , et al . Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning and water/oil separation[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22034-22043. |
46 | LI Y , ZHANG Z , WANG M , et al . One-pot fabrication of nanoporous polymer decorated materials: from oil-collecting devices to high-efficiency emulsion separation[J]. Journal of Materials Chemistry A, 2017, 5(10): 5077-5087. |
47 | GU J , XIAO P , CHEN J , et al . Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2014, 2(37): 15268-15272. |
48 | XU Z , ZHAO Y , WANG H , et al . Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5661-5667. |
49 | 卢季 . 热致相分离法制备PVDF膜的研究[D]. 宁波: 宁波大学, 2013. |
LU J . The study of polyvinylidene fluoride membrane via thermally induced phase separation[D]. Ningbo: Ningbo University, 2013. | |
50 | CHENG Z , WANG J , LAI H , et al . pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2015, 31(4): 1393-1399. |
51 | LIU H , GENG B , CHEN Y , et al . Review on the aerogel-type oil sorbents derived from nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 49-66. |
52 | ZHU Y , XIE W , LI J , et al . pH-induced non-fouling membrane for effective separation of oil-in-water emulsion[J]. Journal of Membrane Science, 2015, 477(11): 131-138. |
53 | LI L , LI B , SUN H , et al . Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(28): 14858-14864. |
54 | WANG C F , CHEN L T . Preparation of superwetting porous materials for ultrafast separation of water-in-oil emulsions[J]. Langmuir, 2017, 33(8): 1969-1973. |
55 | NING L Q , XU N K , WANG R , et al . Fibrous membranes electrospun from the suspension polymerization product of styrene and butyl acrylate for oil-water separation[J]. RSC Advances, 2015, 5(70): 57101-57113. |
56 | KHOSRAVI M , AZIZIAN S . Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25326-25333. |
57 | 朱纪磊, 奚正平, 汤慧萍, 等 . 多孔结构表征及分形理论研究简况[J]. 稀有金属材料与工程, 2006, 35(s2): 452-456. |
ZHU J L , XI Z P , TANG H P , et al . Study on characterization porous structure and fractal theory[J]. Rare Metal Materials and Engineering, 2006, 35(s2): 452-456. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[10] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[11] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[15] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |