化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1721-1729.DOI: 10.16085/j.issn.1000-6613.2018-1183
收稿日期:
2018-06-06
修回日期:
2018-10-19
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
郭翠梨
作者简介:
<named-content content-type="corresp-name">吕叶</named-content>(1996—),女,硕士研究生,研究方向为纳米材料的合成与应用。E-mail:<email>lvye2017@tju.edu.cn</email>。|郭翠梨,研究员,硕士生导师,研究方向为纳米材料的合成与多相催化反应。E-mail:<email>gcl@tju.edu.cn</email>。
Received:
2018-06-06
Revised:
2018-10-19
Online:
2019-04-05
Published:
2019-04-05
Contact:
Cuili GUO
摘要:
SSZ-13分子筛由于其特殊的孔道结构和物化性质,被广泛应用于许多领域。本文综述了近年来SSZ-13分子筛的一些常规合成方法,包括水热法、固相研磨法、干胶转换法、转晶法以及超声、微波或加入晶种辅助合成,并对这些方法的优点和不足进行了评价;介绍了模板剂、原料组成及配比和晶化条件对SSZ-13分子筛合成的影响,指出寻找廉价的模板剂、明确这些因素的影响方式具有重要的研究意义;概述了金属改性和引入介孔改性对SSZ-13分子筛催化性能的影响,并提出寻找更为有效的改性方法、深化机理研究是SSZ-13分子筛今后研究的重点。
中图分类号:
吕叶, 胡彤宇, 郭翠梨. SSZ-13分子筛合成及改性研究进展[J]. 化工进展, 2019, 38(04): 1721-1729.
Ye LÜ, Tongyu HU, Cuili GUO. Progress in synthesis and modification of SSZ-13 zeolite[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1721-1729.
1 | ZONES S I . Zeolite SSZ-13 and its method of preparation: US4544538[P]. 1985-10-01. |
2 | KUMAR M , LUO H , ROMANLESHKOV Y , et al . SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control[J]. Journal of the American Chemical Society, 2015, 137(40): 13007-13017. |
3 | IMAI H , HAYASHIDA N , YOKOI T , et al . Direct crystallization of CHA-type zeolite from amorphous aluminosilicategel by seed-assisted method in the absence of organic-structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 196(13): 341-348. |
4 | SOMMER L , MORES D , SVELLE S , et al . Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH[J]. Microporous and Mesoporous Materials, 2010, 132(3): 384-394. |
5 | 杨博, 郭翠梨, 程景耀 . SSZ-13分子筛的合成及应用进展[J]. 化工进展, 2014, 33(2): 368-373. |
YANG B , GUO C L , CHENG J Y . Progress in synthesis and application of SSZ-13 zeolite[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 368-373. | |
6 | KWAK J H , TONKYN R G , KIM D H, et al . Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3 [J]. Journal of Catalysis, 2010, 275(2): 187-190. |
7 | ZHU Q , KONDO J N , OHNUMA R , et al . The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites[J]. Microporous and Mesoporous Materials, 2008, 112(1): 153-161. |
8 | HUDSON M R , QUEEN W L , MASON J A , et al . Unconventional, highly selective CO2 adsorption in zeolite SSZ-13[J]. Journal of the American Chemical Society, 2012, 134(4): 1970-1973. |
9 | BARRER R M . Syntheses and reactions of mordenite[J]. Journal of Chemical Societ, 1948, 24(6): 2158-2163. |
10 | MILLER S J , YUEN L T . Preparation of molecular sieve SSZ-13: US8007764[P]. 2011-08-30. |
11 | REN L M , ZHU L F , YANG C G , et al . Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO x by NH3 [J]. Chemical Communications, 2011, 47(35): 9789-9791. |
12 | 陈标华, 张润铎, 徐瑞年 . 一种合成分子筛SSZ-13的方法: CN103601211A[P]. 2013-12-04. |
CHEN B H , ZHANG R D , XU R N . Method for synthesizing molecular sieve SSZ-13: CN103601211A[P]. 2013-12-04. | |
13 | CHEN B H , XU R N , ZHANG R D , et al . Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NO x by ammonia[J]. Environmental Science & Technology, 2014, 48(23): 13909-13916. |
14 | 王玉峰, 李渊, 汤恩旗 . SSZ-13 分子筛的合成[J]. 天津工业大学学报, 2010, 29(1): 64-67. |
WANG Y F , LI Y , TANG E Q . Synthesis of molecular sieve SSZ-13[J]. Journal of Tianjin Polytechnic University, 2010, 29(1): 64-67. | |
15 | MENG X J , XIAO F S . Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
16 | REN L M , WU Q M , YANG C G , et al . Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
17 | 孟祥举, 王勤明, 王雄, 等 . 一种通过固相研磨合成SSZ-13分子筛的方法: CN104709917A[P]. 2015-02-11. |
MENG X J , WANG Q M , WANG X , et al . Method for synthesizing SSZ-13 molecular sieve by solid phase grinding: CN104709917A[P]. 2015-02-11. | |
18 | HOU C , HU M , LI Y . Low-temperature solvent-free synthesis of high-silica small size Cu-SSZ-13 zeolite by mixing silicon source, source aluminum , source alkaline , amine organic , and source copper , grinding, crystallizing, filtering, and drying : CN105197955A[P]. 2015-12-30. |
19 | XU W , DONG J , LI J , et al . A novel method for preparation of zeolite ZSM-5[J]. Journal of the Chemical Society-Chemical Communication, 1990, 10(10): 755-756. |
20 | HU D , XIA Q H , LU X H , et al . Synthesis of ultrafine zeolites by dry-gel conversion without any organic additive[J]. Materials Research Bulletin, 2008, 43(12): 3553-3561. |
21 | FENG Q , PEI R Y , LIU H G , et al . Synthesis of monolithic SSZ-13 zeolite by dry-gel conversion method[J]. CIESC Journal, 2017, 68(3): 1231-1238. |
22 | INOUE T , ITAKURA M , JON H, et al . Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction[J]. Microporous and Mesoporous Materials, 2009, 122(1): 149-154. |
23 | ZONES S I . Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13[J]. Journal of the Chemical Society Faraday Transactions, 1990, 86(20): 3467-3472. |
24 | 崔萌萌, 李牛, 关乃佳, 等 . Y沸石转化法合成SSZ-13 机理研究[C]//第18届全国分子筛学术大会论文集(下), 2015: 38. |
CUI M M , LI N , GUAN N J , et al . Mechanism of synthesis of SSZ-13 by Y zeolite transformation[C]//Proceedings of the 18th National Molecular Sieve Academic Conference, 2015: 38. | |
25 | TAKATA T , TSUNOJI N , TAKAMITSU Y , et al . Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite[J]. Microporous and Mesoporous Materials, 2016, 225: 524-533. |
26 | JUN J W, KHAN N A , SEO P W, et al . Conversion of Y into SSZ-13 zeolites and ethylene-to-propylene reactions over the obtained SSZ-13 zeolites[J]. Chemical Engineering Journal, 2016, 303: 667-674. |
27 | KINGSTONE H M , HASWELL S J . Microwave-enhanced chemistry[M]. Washington D C: American Chemical Society, 1997. |
28 | YU H F , ZHANG G P , HAN L N , et al . Cu-SSZ-13 catalyst synthesized under microwave irradiation and its performance in catalytic removal of NO x from vehicle exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2165-2173. |
29 | RAKMAE S , KEAWKUMAY C , OSAKOO N , et al . Realization of active species in potassium catalysts on zeolite NaY prepared by ultrasound-assisted impregnation with acetate buffer and improved performance in transesterification of palm oil[J]. Fuel, 2016, 184: 512-517. |
30 | VAFAEIAN Y , HAGHIGHI M , AGHAMOHAMMADI S . Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane[J]. Energy Conversion and Management, 2013, 76(12): 1093-1103. |
31 | WANG B , WU J , YUAN Z Y , et al . Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure[J]. Ultrasonics Sonochemistry, 2008, 15(4): 334-338. |
32 | MU Y Y , ZHANG Y , FAN J Y , et al . Effect of ultrasound pretreatment on the hydrothermal synthesis of SSZ-13 zeolite[J]. Ultrasonics-Sonochemistry, 2017, 38: 430-436. |
33 | BING L C , TIAN A X , WANG F , et al . Template-free synthesis of hierarchical SSZ-13 microspheres with high MTO catalytic activity[J]. Chemistry-A European Journal, 2018, 24(29):7428-7433. |
34 | 徐如人, 庞文琴, 于吉红, 等 . 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2015. |
XU R R , PANG W Q , YU J H , et al . Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2015. | |
35 | ZONES S I . Preparation of molecular sieves using a structure directing agent and an N,N,N-triakyl benzyl quaternary ammonium cation: US86062407[P]. 2008-03-27. |
36 | 韩玉, 刘红光, 裴仁彦, 等 . 混合模板法低成本合成SSZ-13分子筛的研究[J]. 无机盐工业, 2016, 48(9): 36-39. |
HAN Y , LIU H G , PEI R Y , et al . Cheap and rapid synthesis of SSZ-13 zeolite with dual templates[J]. Inorganic Chemicals Industry, 2016, 48(9): 36-39. | |
37 | WANG X , WU Q M , CHEN C Y , et al . Atom-economical synthesis of a high silica CHA zeolite using a solvent-free route[J]. Chemical Communications, 2015, 51(95): 16920-16923. |
38 | EILERTSEN E A , NILSEN M H , WENDELBO R , et al . Synthesis of high silica CHA zeolites with controlled Si/Al ratio[J]. Studies in Surface Science & Catalysis, 2008, 174(8): 265-268. |
39 | LIU B , ZHENG Y , HUA N , et al . Synthesis of low-silica CHA zeolite chabazite in fluoride media without organic structural directing agents and zeolites[J]. Microporous and Mesoporous Materials, 2014, 196(13): 270-276. |
40 | PENG C , LIU Z D , HORIMOTO A , et al . Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method[J]. Microporous and Mesoporous Materials, 2018, 255: 192-199. |
41 | LIU Z , WAKIHARA T , OSHIMA K , et al . Widening synthesis bottlenecks: realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NO x removal[J]. Angewandte Chemie International Edition, 2015, 54(19): 5683-5687. |
42 | 陈柯臻, 钟丽萍, 陈然, 等 . 金属改性 ZSM-5 分子筛催化剂应用于甲醇制烯烃[J]. 化工进展, 2017, 36(10): 3720-3729. |
CHEN K Z , ZHONG L P , CHEN R , et al . Advances in metal-modified ZSM-5 catalysts for methanol to olefins[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3720-3729. | |
43 | EILERTSEN E A , BORDIGA S , LAMBERTI C , et al . Synthesis of titanium chabazite: a new shape selective oxidation catalyst with small pore openings and application in the production of methyl formate from methanol[J]. Chemcatchem, 2011, 3(12): 1869-1871. |
44 | ZHANG R R , LI Y H , ZHEN T L . Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13[J]. RSC Advances, 2014, 4(94): 52130-52139. |
45 | WANG J C , PENG Z L , Q H, et al . Cerium-stabilized Cu-SSZ-13 catalyst for the catalytic removal of NO x by NH3 [J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1174-1182. |
46 | LIU X J , LI Y H , ZHANG R R . Ammonia selective catalytic reduction of NO over Ce-Fe/Cu-SSZ-13 catalysts[J]. RSC Advances, 2015, 5(104):85453-85459. |
47 | WU L L , DEGIRMENCI V , MAGUSIN P C M M , et al . Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction[J]. Chemistry Communication, 2012, 48(76): 9492-9494. |
48 | WU L L , DEGIRMENCI V , MAGUSIN P C M M , et al . Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction[J]. Journal of Catalysis, 2013, 298(1): 27-40. |
49 | 由慧玲, 程涛, 姚远 . 介孔SSZ-13催化剂的合成以及在甲醇制烯烃反应中的应用[J]. 化工中间体, 2014(6): 18-22. |
YOU H L , CHENG T , YAO Y . Synthesis of mesoporous SSZ-13 catalyst and its application in the reaction of methanol to olefins[J]. Chemical Intermediate, 2014(6): 18-22. | |
50 | 王志光, 刘国东, 王建青, 等 . 具有微孔-介孔的多级孔SSZ-13分子筛及其合成方法和应用: CN106745036A[P]. 2017-05-31. |
WANG Z G , LIU G D , WANG J Q , et al . Multi-hole SSZ-13 molecular sieve with micropore-mesoporous and its synthesis method and application: CN106745036A[P]. 2017-05-31. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |