化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1730-1738.DOI: 10.16085/j.issn.1000-6613.2018-0897
收稿日期:
2018-05-02
修回日期:
2018-06-20
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
李忠,郑占丰
作者简介:
<named-content content-type="corresp-name">刘沛</named-content>(1992—),男,硕士研究生,研究方向为光催化绿色合成。E-mail:<email>Liu_P1992@126.com</email>。|李忠,博士,教授,博士生导师,研究方向为多相催化。E-mail:<email>lizhong@tyut.edu.cn</email>|郑占丰,博士,研究员,博士生导师,研究方向为光催化绿色合成。E-mail:<email>zfzheng@sxicc.ac.cn</email>
基金资助:
Pei LIU1(),Xianmo GU2,Peng KONG1,2,Zhong LI1(
),Zhanfeng ZHENG2(
)
Received:
2018-05-02
Revised:
2018-06-20
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhong LI,Zhanfeng ZHENG
摘要:
氢胺化反应是将氮氢键直接加成到碳碳不饱和键上的原子经济性反应,是一种合成胺类化合物的重要路径,在合成含氮化合物方面具有重要意义。本文首先介绍了氢胺化反应的机理,从活化胺类和活化不饱和烃类两个氢胺化反应机理的视角,详细阐述了IB族中的Au、Ag、Cu和IIB族中的Zn 4种金属在氢胺化反应过程中活化底物的方式,并指出了IB和IIB两族金属在氢胺化反应的热催化体系中存在的优缺点,在均相体系中反应温度较低,但操作步骤繁琐,催化剂不能循环利用,而在多相体系中可以实现催化剂的循环利用,但又面临着反应温度高的问题,因此开发温和条件下高效绿色的催化体系显得至关重要。此外,对光催化技术在氢胺化反应中的应用前景进行了展望,而非贵金属利用可见光在温和条件下实现高效催化氢胺化反应是未来的一个重要发展方向。
中图分类号:
刘沛, 谷献模, 孔鹏, 李忠, 郑占丰. IB和IIB族金属催化氢胺化反应的研究进展[J]. 化工进展, 2019, 38(04): 1730-1738.
Pei LIU, Xianmo GU, Peng KONG, Zhong LI, Zhanfeng ZHENG. Research progress in catalytic hydroamination of IB and IIB metal catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1730-1738.
1 | BYTSCHKOV I , DOYE S . Microwave-assisted catalytic intermolecular hydroamination of alkynes[J]. European Journal of Organic Chemistry, 2001, 23: 4411-4418. |
2 | PEARLMAN D S . Antihistamines: pharmacology and clinical use[J]. Drugs, 1976, 12(4): 258-273. |
3 | AGER D J , PRAKASH I , SCHAAD D R . 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis[J]. Chemical Reviews, 1996, 27(30): 835-876. |
4 | VORBRŨGGEN H , KROLIKIEWICZ K . Amination, Ⅲ. trimethylsilanol as leaving group, Ⅴ. silylation-amination of hydroxy N-heterocycles[J]. Chemische Berichte, 1984, 117(4): 1523-1541. |
5 | BALARAMAN E , GNANAPRAKASAM B , SHIMON L J W , et al . Direct hydrogenation of amides to alcohols and amines under mild conditions[J]. Journal of the American Chemical Society, 2010, 132(47): 16756-16758. |
6 | LORITSCH J A , VOGT R R . The addition of aryl amines to alkynes[J]. Journal of the American Chemical Society, 1939, 61: 1462-1463. |
7 | WALSH P J , BARANGER A M , BERGMAN R G . Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp2Zr(NHR)2 [J]. Journal of the American Chemical Society, 1992, 114(5): 1708-1719. |
8 | MCGRANE P L , JENSEN M , LIVINGHOUSE T . Intramolecular [2+2] cycloadditions of group-Ⅳ metal imido complexes-applications to the synthesis of dihydropyrrole and tetrahydropyridine derivatives[J]. Journal of the American Chemical Society, 1992, 114(13): 5459-5460. |
9 | LI Y W , MARKS T J . Organolanthanide-catalyzed intramolecular hydroamination/cyclization of aminoalkynes[J]. Journal of the American Chemical Society, 1996, 118(39): 9295-9306. |
10 | HONG S W , MARKS T J . Highly stereoselective intramolecular hydroamination/cyclization of conjugated aminodienes catalyzed by organolanthanides[J]. Journal of the American Chemical Society, 2002, 124(27): 7886-7887. |
11 | HUANG L , ARNDT M , GOOBEN K , et al . Late transition metal-catalyzed hydroamination and hydroamidation[J]. Chemical Reviews, 2015, 115(7): 2596-2697. |
12 | POHLKI F , DOYE S . The catalytic hydroamination of alkynes[J]. Chemical Society Reviews, 2003, 32(2): 104-114. |
13 | SEVERIN R , DOYE S . The catalytic hydroamination of alkynes[J]. Chemical Society Reviews, 2007, 36(9): 1407-1420. |
14 | HAGGIN J . Chemists seek greater recognition for catalysis[J]. Chemical & Engineering News, 1993, 71(22): 23-27. |
15 | ANANIKOV V P , BELETSKAYA I P . Alkyne and alkene insertion into metal-heteroatom and metal-hydrogen bonds: the key stages of hydrofunctionalization process[J]. Hydrofunctionalization, 2013, 43:1-19. |
16 | MŨLLER T E , PLEIER A K . Intramolecular hydroamination of alkynes catalysed by late transition metals[J]. Journal of the Chemical Society, Dalton Transactions, 1999(4): 583-587. |
17 | SENGUPTA M , BAG A, DAS S, et al . Reaction and mechanistic studies of heterogeneous hydroamination over support-stabilized gold nanoparticles[J]. Chem. Cat. Chem., 2016, 8(19): 3121-3130. |
18 | ZHAO J , ZHENG Z , BOTTLE S , et al . Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature[J]. Chemical Communications, 2013, 49(26): 2676-2678. |
19 | MUNRO-LEIGHTON C , DELP S A , ALSOP N M , et al . Anti-markovnikov hydroamination and hydrothiolation of electron-deficient vinylarenes catalyzed by well-defined monomeric copper(Ⅰ) amido and thiolate complexes[J]. Chemical Communications, 2008(1): 111-113. |
20 | SEAYAD J , TILLACK A , HARTUNG C G , et al . Base-catalyzed hydroamination of olefins: an environmentally friendly route to amines[J]. Advanced Synthesis & Catalysis, 2002, 344(8): 795-813. |
21 | OHMIYA H , MORIYA T , SAWAMURA M . Cu(Ⅰ)-catalyzed intramolecular hydroamination of unactivated alkenes bearing a primary or secondary amino group in alcoholic solvents[J]. Organic Letters, 2009, 11(10): 2145-2147. |
22 | POUY M J , DELP S A , UDDIN J , et al . Intramolecular hydroalkoxylation and hydroamination of alkynes catalyzed by Cu(Ⅰ) complexes supported by N-heterocyclic carbene ligands[J]. ACS Catalysis, 2012, 2(10): 2182-2193. |
23 | SENGUPTA M , DAS S, BORDOLOI A . Cu/Cu2O nanoparticle interface: rational designing of a heterogeneous catalyst system for selective hydroamination[J]. Molecular Catalysis, 2017, 440:57-65. |
24 | BIYIKAL M , LÖHNWITZ K , MEYER N , et al . β-Diketiminate zinc complexes for the hydroamination of alkynes[J]. European Journal of Inorganic Chemistry, 2010(7): 1070-1081. |
25 | SARISH S P , SCHAFFNER D , SUN Y , et al . Evidence for the formation of a metal alkyl intermediate in the zinc mediated intramolecular hydroamination[J]. Chemical Communications, 2013, 49(83): 9672-9674. |
26 | EISENSTEIN O , HOFFMANN R . Activation of a coordinated olefin toward nucleophilic-attack[J]. Journal of the American Chemical Society, 1980, 102(19): 6148-6149. |
27 | EISENSTEIN O , HOFFMANN R . Transition-metal complexed olefins-how their reactivity towards a nucleophile relates to their electronic-structure[J]. Journal of the American Chemical Society, 1981, 103(15): 4308-4320. |
28 | CHENG X , KUOK HII K . Palladium-catalyzed addition of R2NH to double bonds. synthesis of α-amino tetrahydrofuran and pyran rings[J]. Tetrahedron, 2001, 57(25): 5445-5450. |
29 | HUDRLIK P F , HUDRLIK A M . Enol acetates, enol ethers, and amines by mercuration of acetylenes[J]. Journal of Organic Chemistry, 1973, 38(25): 4254-4258. |
30 | DUAN H F , SENGUPTA S , PETERSEN J L , et al . Triazole-Au(Ⅰ) complexes: a new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination[J]. Journal of the American Chemical Society, 2009, 131(34): 12100-12102. |
31 | PATIL N T , MUTYALA A K , LAKSHMI P G , et al . Au(Ⅰ)-catalyzed cascade reaction involving formal double hydroamination of alkynes bearing tethered carboxylic groups: an easy access to fused dihydrobenzimidazoles and tetrahydroquinazolines[J]. Journal of Organic Chemistry, 2010, 75(17): 5963-5975. |
32 | PATIL N T , LAKSHMI P G V V , SINGH V . AuI-catalyzed direct hydroamination/hydroarylation and double hydroamination of terminal alkynes[J]. European Journal of Organic Chemistry, 2010, 24: 4719-4731. |
33 | MIZUSHIMA E , HAYASHI T , TANAKA M . Au(Ⅰ)-catalyzed highly efficient intermolecular hydroamination of alkynes[J]. Organic Letters, 2003, 5(18): 3349-3352. |
34 | LIANG S , HAMMOND L , XU B , et al . Commercial supported gold nanoparticles catalyzed alkyne hydroamination and indole synthesis[J]. Advanced Synthesis & Catalysis, 2016, 358(20): 3313-3318. |
35 | KITAHARA H , SAKURAI H . Catalytic activity of gold nanoclusters in intramolecular hydroamination of alkenes and alkynes with toluenesulfonamide under aerobic and basic conditions[J]. Journal of Organometallic Chemistry, 2011, 696(1): 442-449. |
36 | BISTONI G , BELANZONI P , BELPASSI L , et al . π Activation of alkynes in homogeneous and heterogeneous gold catalysis[J]. The Journal of Physical Chemistry A, 2016, 120(27): 5239-5247. |
37 | BEEREN S R , DABB S L , MESSERLE B A . Intramolecular hydroamination catalysed by Ag complexes stabilised in situ by bidentate ligands[J]. Journal of Organometallic Chemistry, 2009, 694(2): 309-312. |
38 | SU Y , LU M , DONG B , et al . Silver-catalyzed alkyne activation: the surprising ligand effect[J]. Advanced Synthesis & Catalysis, 2014, 356(4): 692-696. |
39 | ZHANG X , ZHOU Y , WANG H , et al . Silver-catalyzed intramolecular hydroamination of alkynes in aqueous media: efficient and regioselective synthesis for fused benzimidazoles[J]. Green Chemistry, 2011, 13(2): 397-405. |
40 | CHONG Q , XIN X , WANG C , et al . Synthesis of polysubstituted pyrroles via Ag(Ⅰ)-mediated conjugate addition and cyclization reaction of terminal alkynes with amines[J]. Tetrahedron, 2014, 70(2): 490-494. |
41 | LIU Y , WU G , CUI Y . Ag/CNT-catalyzed hydroamination of activated alkynes with aromatic amines[J]. Applied Organometallic Chemistry, 2013, 27(4): 206-208. |
42 | PENZIEN J , HAEBNER C , JENTYS A , et al . Heterogeneous catalysts for hydroamination reactions: structure-activity relationship[J]. Journal of Catalysis, 2004, 221(2): 302-312. |
43 | JOSEPH T , SHANBHAG G V , HALLIGUDI S B . Copper(Ⅱ) ion-exchanged montmorillonite as catalyst for the direct addition of N—H bond to CC triple bond[J]. Journal of Molecular Catalysis A: Chemical, 2005, 236(1/2): 139-144. |
44 | SHANBHAG G , JOSEPH T , HALLIGUDI S . Copper(Ⅱ) ion exchanged AlSBA-15: a versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines[J]. Journal of Catalysis, 2007, 250(2): 274-282. |
45 | BÓDIS J , MÜLLER T E , LERCHER J A . Novel hydroamination reactions in a liquid-liquid two-phase catalytic system[J]. Green Chemistry, 2003, 5(2): 227-231. |
46 | SHANBHAG G V , HALLIGUDI S B . Intermolecular hydroamination of alkynes catalyzed by zinc-exchanged montmorillonite clay[J]. Journal of Molecular Catalysis A: Chemical, 2004, 222(1/2): 223-228. |
47 | PEETERS A , VALVEKENS P , AMELOOT R , et al . Zn-Co double metal cyanides as heterogeneous catalysts for hydroamination: a structure-activity relationship[J]. ACS Catalysis, 2013, 3(4): 597-607. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 197
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 363
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |