化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1197-1206.DOI: 10.16085/j.issn.1000-6613.2018-1175
章学来(),郑钦月,田镇,王章飞,贾潇雅,陈跃,周鑫晨,甘伟
收稿日期:
2018-06-05
修回日期:
2018-10-26
出版日期:
2019-03-05
发布日期:
2019-03-05
作者简介:
基金资助:
Xuelai ZHANG(),Qinyue ZHENG,Zhen TIAN,Zhangfei WANG,Xiaoya JIA,Yue CHEN,Xinchen ZHOU,Wei GAN
Received:
2018-06-05
Revised:
2018-10-26
Online:
2019-03-05
Published:
2019-03-05
摘要:
利用电镜扫描法、紫外分光光度法及烘干称重法对纳米TiO2流体的分散稳定性进行了综合评价,研究了表面活性剂种类及浓度对其分散稳定性的影响。将纳米TiO2流体引入真空闪蒸制取冰浆系统,研究了纳米TiO2浓度、表面活性剂浓度及对吸附作用下纳米TiO2流体真空闪蒸制冰的影响。结果表明,表面活性剂类型对纳米TiO2流体分散稳定性的影响很大,复合型的分散稳定性最佳,其次是阴离子型;纳米粒子及表面活性剂可以增强真空下纳米TiO2流体的成核效果,增大含冰率,降低过冷度;表面活性剂浓度是影响真空闪蒸制冰系统压力及闪蒸率的重要因素,系统压力及闪蒸率均随着表面活性剂浓度的增大而增大;另外,确定了在吸附作用下真空闪蒸制冰系统中使用纳米TiO2流体的最佳条件。在最佳条件下,含冰率为18.35%,过冷度为0.51℃,热导率为0.920W/(m·K),对比蒸馏水有较大改善。吸附作用下真空闪蒸制冰可行性较高,制取冰浆效果优良。
中图分类号:
章学来,郑钦月,田镇,王章飞,贾潇雅,陈跃,周鑫晨,甘伟. 纳米TiO2 流体表面改性及对真空闪蒸制冰的影响[J]. 化工进展, 2019, 38(03): 1197-1206.
Xuelai ZHANG,Qinyue ZHENG,Zhen TIAN,Zhangfei WANG,Xiaoya JIA,Yue CHEN,Xinchen ZHOU,Wei GAN. TiO2 nanofluids surface modification and the influence on the vacuum flash ice-making[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1197-1206.
粒径 /nm | 比表面积 /m2·g-1 | 分子量 | 密度 /kg·m-3 | 纯度 /% | 晶型 |
---|---|---|---|---|---|
5~10 | 210±10 | 79.87 | 4260 | 99.80 | 锐钛 |
表1 纳米TiO2粒子性质
粒径 /nm | 比表面积 /m2·g-1 | 分子量 | 密度 /kg·m-3 | 纯度 /% | 晶型 |
---|---|---|---|---|---|
5~10 | 210±10 | 79.87 | 4260 | 99.80 | 锐钛 |
英文缩写 | 分子量 | 类型 | 外观 |
---|---|---|---|
SDS/S | 288.38 | 阴离子型 | 白色粉状 |
SDBS/SB | 348.48 | 阴离子型 | 白色粉状 |
CTAB | 364.45 | 阳离子型 | 白色粉状 |
PEG | 6000.00 | 非离子型 | 白色蜡状 |
SPAN/SP | 430.60 | 非离子型 | 淡黄蜡状 |
表2 表面活性剂性质
英文缩写 | 分子量 | 类型 | 外观 |
---|---|---|---|
SDS/S | 288.38 | 阴离子型 | 白色粉状 |
SDBS/SB | 348.48 | 阴离子型 | 白色粉状 |
CTAB | 364.45 | 阳离子型 | 白色粉状 |
PEG | 6000.00 | 非离子型 | 白色蜡状 |
SPAN/SP | 430.60 | 非离子型 | 淡黄蜡状 |
仪器名称 | 型号 | 精度 | 生产公司 |
---|---|---|---|
安捷伦 | 34972A | 1次·s-1 | 是德科技公司 |
热电阻 | NS-Pt100-035-3-2-XC | A级 | 南京尤尼森自控仪表有限公司 |
电子天平 | FA2004 | ±0.1mg | 上海方瑞仪器有限公司 |
低温恒温槽 | DC6515 | — | 上海衡平仪器厂 |
压力传感器 | MD-GA-5K-A-A-P2-M1-A-T1 | 0.5% FS | 上海铭动电子科技有限公司 |
磁力搅拌器 | HJ-6A | — | 金坛市城西峥嵘实验仪器厂 |
潜热测试仪器 | DSC200F3 | 0.1%μW | 德国Netzsch公司 |
超声波振荡仪 | SY-300 | — | 上海宁商超声仪器有限公司 |
电热鼓风干燥箱 | DHG-9240 | — | 上海一恒科学仪器有限公司 |
热导率测试仪器 | TPS2500s | ±0.01℃ | 瑞典Hot Disk有限公司 |
紫外可见分光光度计 | T6新世纪 | 杂散光 ≤0.05% | 北京普析通用仪器有限责任公司 |
数字化扫描电子显微镜(SEM) | KYKY-EM6000 | — | 北京中科科仪股份有限公司 |
表3 实验仪器
仪器名称 | 型号 | 精度 | 生产公司 |
---|---|---|---|
安捷伦 | 34972A | 1次·s-1 | 是德科技公司 |
热电阻 | NS-Pt100-035-3-2-XC | A级 | 南京尤尼森自控仪表有限公司 |
电子天平 | FA2004 | ±0.1mg | 上海方瑞仪器有限公司 |
低温恒温槽 | DC6515 | — | 上海衡平仪器厂 |
压力传感器 | MD-GA-5K-A-A-P2-M1-A-T1 | 0.5% FS | 上海铭动电子科技有限公司 |
磁力搅拌器 | HJ-6A | — | 金坛市城西峥嵘实验仪器厂 |
潜热测试仪器 | DSC200F3 | 0.1%μW | 德国Netzsch公司 |
超声波振荡仪 | SY-300 | — | 上海宁商超声仪器有限公司 |
电热鼓风干燥箱 | DHG-9240 | — | 上海一恒科学仪器有限公司 |
热导率测试仪器 | TPS2500s | ±0.01℃ | 瑞典Hot Disk有限公司 |
紫外可见分光光度计 | T6新世纪 | 杂散光 ≤0.05% | 北京普析通用仪器有限责任公司 |
数字化扫描电子显微镜(SEM) | KYKY-EM6000 | — | 北京中科科仪股份有限公司 |
条件 | 纳米TiO2与表面活性剂配比 | 纳米TiO2质量分数/% |
---|---|---|
i | 纳米TiO2∶CTAB=10∶5 | 0.20 |
ii | 纳米TiO2∶SDS = 10∶5 | |
iii | 纳米TiO2∶SDBS=10∶5 | |
iv | 纳米TiO2∶SPAN=10∶5 | |
v | 纳米TiO2∶PEG=10∶5 |
表4 纳米TiO2表面改性实验条件1
条件 | 纳米TiO2与表面活性剂配比 | 纳米TiO2质量分数/% |
---|---|---|
i | 纳米TiO2∶CTAB=10∶5 | 0.20 |
ii | 纳米TiO2∶SDS = 10∶5 | |
iii | 纳米TiO2∶SDBS=10∶5 | |
iv | 纳米TiO2∶SPAN=10∶5 | |
v | 纳米TiO2∶PEG=10∶5 |
条件 | 复合型表面活性剂 复合配比 | 纳米TiO2与表面活性剂 配比 | 纳米TiO2 质量分数/% |
---|---|---|---|
Ⅰ | SDS∶SPAN=10∶0.5 | 纳米TiO2∶SDS-SPAN=10∶5 | 0.20 |
Ⅱ | SDS∶SPAN=10∶1 | ||
Ⅲ | SDS∶SPAN=10∶3 | ||
Ⅳ | SDS∶SPAN=10∶5 | ||
Ⅴ | SDS∶SPAN=10∶7 | ||
Ⅵ | SDS∶SPAN=10∶10 | ||
Ⅶ | SDBS∶SPAN =10∶0.5 | 纳米TiO2∶SDBS-SPAN = 10∶5 | 0.20 |
Ⅷ | SDBS∶SPAN =10∶1 | ||
Ⅸ | SDBS∶SPAN=10∶3 | ||
Ⅹ | SDBS∶SPAN = 10∶5 | ||
Ⅺ | SDBS∶SPAN = 10∶7 | ||
Ⅻ | SDBS∶SPAN = 10∶10 |
表5 纳米TiO2表面改性实验条件2
条件 | 复合型表面活性剂 复合配比 | 纳米TiO2与表面活性剂 配比 | 纳米TiO2 质量分数/% |
---|---|---|---|
Ⅰ | SDS∶SPAN=10∶0.5 | 纳米TiO2∶SDS-SPAN=10∶5 | 0.20 |
Ⅱ | SDS∶SPAN=10∶1 | ||
Ⅲ | SDS∶SPAN=10∶3 | ||
Ⅳ | SDS∶SPAN=10∶5 | ||
Ⅴ | SDS∶SPAN=10∶7 | ||
Ⅵ | SDS∶SPAN=10∶10 | ||
Ⅶ | SDBS∶SPAN =10∶0.5 | 纳米TiO2∶SDBS-SPAN = 10∶5 | 0.20 |
Ⅷ | SDBS∶SPAN =10∶1 | ||
Ⅸ | SDBS∶SPAN=10∶3 | ||
Ⅹ | SDBS∶SPAN = 10∶5 | ||
Ⅺ | SDBS∶SPAN = 10∶7 | ||
Ⅻ | SDBS∶SPAN = 10∶10 |
条件 | 纳米TiO2 质量分数/% | 纳米TiO2与表面活性剂配比 | 条件 | 纳米TiO2与表面活性剂配比 | 复合型表面活性剂复合配比 | 纳米TiO2质量分数/% |
---|---|---|---|---|---|---|
(1) | 0.05 | 纳米TiO2∶SDBS=10∶5 | (6) | 纳米TiO2∶SDBS-SPAN=1∶10 | SDBS∶SPAN=10∶7 | 0.20 |
(2) | 0.10 | (7) | 纳米TiO2∶SDBS-SPAN=3∶10 | |||
(3) | 0.15 | (8) | 纳米TiO2∶SDBS-SPAN=5∶10 | |||
(4) | 0.20 | (9) | 纳米TiO2∶SDBS-SPAN=7∶10 | |||
(5) | 0.25 | (10) | 纳米TiO2∶SDBS-SPAN=10∶10 |
表6 纳米TiO2真空闪蒸制冰实验
条件 | 纳米TiO2 质量分数/% | 纳米TiO2与表面活性剂配比 | 条件 | 纳米TiO2与表面活性剂配比 | 复合型表面活性剂复合配比 | 纳米TiO2质量分数/% |
---|---|---|---|---|---|---|
(1) | 0.05 | 纳米TiO2∶SDBS=10∶5 | (6) | 纳米TiO2∶SDBS-SPAN=1∶10 | SDBS∶SPAN=10∶7 | 0.20 |
(2) | 0.10 | (7) | 纳米TiO2∶SDBS-SPAN=3∶10 | |||
(3) | 0.15 | (8) | 纳米TiO2∶SDBS-SPAN=5∶10 | |||
(4) | 0.20 | (9) | 纳米TiO2∶SDBS-SPAN=7∶10 | |||
(5) | 0.25 | (10) | 纳米TiO2∶SDBS-SPAN=10∶10 |
纳米TiO2 质量分数/% | 过冷度 /℃ | 含冰率 /% | 闪蒸率 /% |
---|---|---|---|
0.05 | 1.70 | 20.30 | 44.76 |
0.10 | 2.14 | 14.73 | 57.64 |
0.15 | 2.15 | 7.79 | 59.99 |
0.20 | 1.54 | 16.83 | 44.10 |
0.25 | 2.07 | 7.21 | 58.20 |
蒸馏水 | 2.31 | 13.05 | 15.71 |
表7 不同纳米TiO2浓度真空闪蒸制冰实验数据表
纳米TiO2 质量分数/% | 过冷度 /℃ | 含冰率 /% | 闪蒸率 /% |
---|---|---|---|
0.05 | 1.70 | 20.30 | 44.76 |
0.10 | 2.14 | 14.73 | 57.64 |
0.15 | 2.15 | 7.79 | 59.99 |
0.20 | 1.54 | 16.83 | 44.10 |
0.25 | 2.07 | 7.21 | 58.20 |
蒸馏水 | 2.31 | 13.05 | 15.71 |
纳米TiO2∶SDBS-SPAN | 过冷度/℃ | 含冰率/% | 闪蒸率/% |
---|---|---|---|
10∶1 | 2.00 | 19.03 | 38.15 |
10∶3 | 1.11 | 30.25 | 42.64 |
10∶5 | 0.51 | 18.35 | 42.56 |
10∶7 | 1.08 | 5.89 | 50.58 |
10∶10 | 0.71 | 6.28 | 50.09 |
蒸馏水 | 2.31 | 13.05 | 15.71 |
表8 不同SDBS-SPAN浓度真空闪蒸制冰实验数据表
纳米TiO2∶SDBS-SPAN | 过冷度/℃ | 含冰率/% | 闪蒸率/% |
---|---|---|---|
10∶1 | 2.00 | 19.03 | 38.15 |
10∶3 | 1.11 | 30.25 | 42.64 |
10∶5 | 0.51 | 18.35 | 42.56 |
10∶7 | 1.08 | 5.89 | 50.58 |
10∶10 | 0.71 | 6.28 | 50.09 |
蒸馏水 | 2.31 | 13.05 | 15.71 |
1 | ARTECONI A , HEWITT N J , POLONARA F . State of the art of thermal storage for demandside management[J]. Applied Energy, 2012, 93(5): 371-389. |
2 | ZHOU D , ZHAO C Y , TIAN Y . Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92(4): 593-605. |
3 | EGOLF P W , KAUFFELD M . From physical properties of ice slurries to industrial ice slurry applications[J]. International Journal of Refrigeration, 2005, 28(1): 4-12. |
4 | 方贵银, 邢琳, 杨帆 . 动态冰浆蓄冷空调系统及特性[J]. 电力需求侧管理, 2005, 75(6): 48-50. |
FANG G Y , XING L , YANG F . Dynamic ice slurries storage systems and its characteristics[J]. Power Demand Side Management, 2005, 75(6): 48-50. | |
5 | 董昕玥 . 真空制冰矿井降温输冰关键技术的研究[D]. 武汉: 武汉理工大学, 2013. |
DONG X Y . Research on key technologies of transporting ice in vacuum ice for deep mine cooling[D]. Wuhan: Wuhan University of Technology, 2013. | |
6 | 张皖君, 蓝蔚青, 肖蕾, 等 . 流化冰在水产品保鲜中的应用研究进展[J]. 食品与机械, 2016(7): 214-218. |
ZHANG W J , LAN W Q , XIAO L , et al . Progress on application research of fresh ice for aquatic products preservation[J]. Food & Machinery, 2016(7): 214-218. | |
7 | 郝玲, 刘圣春, 杨旭凯 . 动态冰浆的应用及制取方法的现状及展望[J]. 制冷与空调, 2014, 14(11): 1-10. |
HAO L , LIU S C , YANG X K . The present situation and outlook about application fields and generation methods of ice slurry[J]. Refrigeration and Air-Conditioning, 2014, 14(11): 1-10. | |
8 | 王倩, 孙晓红, 蓝蔚青, 等 . 保鲜冰在水产品保藏中的应用研究进展[J]. 食品与机械, 2016(3): 226-230. |
WANG Q , SUN X H , LAN W Q , et al . Progress on application research of fresh ice for aquatic products preservation[J]. Food & Machinery, 2016(3): 226-230. | |
9 | 吴鹏, 张学军, 邱利民, 等 . 二元冰蓄冷系统中的纳米添加剂成核特性研究[J]. 浙江大学学报(工学版), 2009, 43(9): 1668-1671. |
WU P , ZHANG X J , QIU L M , et al . Nucleation characteristics of nano-additives in binary ice thermal storage system[J]. Journal of Zhejiang University(Engineering Science), 2009, 43(9): 1668-1671. | |
10 | MAXWELL J C . A treatise on electricity and magnetism[M]. Oxford: Clarendon, 1955. |
11 | 宣益民, 李强 . 纳米流体能量传递理论与应用[M]. 北京: 科学出版社, 2010: 2-4. |
XUAN Y M , LI Q . An overview on nanofluids and applications[M]. Beijing: Scientia Press, 2010: 2-4. | |
12 | 李强 . 纳米流体强化传热机理研究[D]. 南京: 南京理工大学, 2004. |
LI Q . Investigation on enhanced heat transfer of nanofluids[D]. Nanjing: Nanjing University of Science and Technology, 2004. | |
13 | HU Z S , DONG J X , CHEN G X . Study on antiwear and reducing friction additive of nanometer ferric oxide[J]. Tribology International, 1998, 31(7): 355-360. |
14 | 吴淑英, 朱冬生, 杨硕 . Al2O3-H2O纳米流体的相变蓄冷实验研究[J]. 工程热物理学报, 2009, 30(6): 981-983. |
WU S Y , ZHU D S , YANG S . Experimental study on phase change cool storage of Al2O3-H2O nanofluids[J]. Journal of Engineering Thermophysics, 2009, 30(6): 981-983. | |
15 | CHAKRABORTY S , SARKAR I , BEHERA D K , et al . Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2, nanofluid[J]. Powder Technology, 2016, 307(1): 10-24. |
16 | JIA L , PENG L , CHEN Y , et al . Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate[J]. Applied Energy, 2014, 124(7): 248-255. |
17 | SATO T , KOHNOSU S . Effect of surfactant concentration on the stability of aqueous titanium dioxide suspensions[J]. Journal of Colloid & Interface Science, 1991, 143(2): 434-439. |
18 | GHADIMI A , METSELAAR I H . The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid[J]. Experimental Thermal & Fluid Science, 2013, 51(11): 1-9. |
19 | HWANG Y , Jan-Keun LEE , Jong-Ku LEE , et al . Production and dispersion stability of nanoparticles in nanofluids[J]. Powder Technology, 2008, 186(2): 145-153. |
20 | 施赛燕, 崔晓钰, 周宇, 等 . 石墨烯/去离子水纳米流体振荡热管传热性能[J]. 化工学报, 2016, 67(12): 4944-4950. |
SHI S Y , CUI X Y , ZHOU Y , et al . Heat transfer performance of pulsating heat pipe with graphene aqueous nano-fluids[J]. CIESC Journal, 2016, 67(12): 4944-4950. | |
21 | 徐会金, 巩亮, 黄善波, 等 . 金属泡沫内纳米流体强化传热研究[J]. 工程热物理学报, 2014, 35(8): 1586-1590. |
XU H J , GONG L , HUANG S B , et al . Heat transfer enhancement of nanofluid in metal foams[J]. Journal of Engineering Thermophysics, 2014, 35(8): 1586-1590. | |
22 | 刘玉东, 李鑫 . 纳米流体的低温蓄冷释冷特性及其谷电蓄冷应用研究[J]. 中国电机工程学报, 2015, 35(11): 2779-2787. |
LIU Y D , LI X . Cold charge and discharge characteristics of nanofluids and its application to ice storage using valley electricity[J]. Proceedings of the CSEE, 2015, 35(11): 2779-2787. | |
23 | 赵红霞, 孙冰洁, 冀翠莲, 等 . 真空闪蒸制取冰浆系统分析[J]. 化工学报, 2013,64(8): 2724-2729. |
ZHAO H X , SUN B J , JI C L , et al . Exergy analysis on ice slurry production system by water spray evaporation in vacuum environment[J]. CIESC Journal, 2013, 64(8): 2724-2729. | |
24 | 徐爱祥 . 新型真空液滴制冰特性研究[D]. 长沙: 中南大学, 2010. |
XU A X . Characteristics on freezing of water droplet due to evaporation[D]. Changsha: Central South University, 2010. | |
25 | 章学来, 李跃, 王章飞, 等 . Cu纳米流体真空闪蒸制冰的实验特性[J]. 化工学报, 2017, 68(6): 2563-2568. |
ZHANG X L , LI Y , WANG Z F , et al . Experimental characteristics of ice preparation via Cu-nano fluid’s vacuum flash[J]. CIESC Journal, 2017, 68(6): 2563-2568. | |
26 | KUMANO H , HIRATA T , SHIRAKAWA M , et al . Flow characteristics of ice slurry in narrow tubes[J]. International Journal of Refrigeration, 2010, 33(8): 1513-1522. |
27 | ASAOKA T , TAJIMA A , KUMANO H . Experimental investigation on inhomogeneity of ice packing factor in ice slurry flow[J]. International Journal of Refrigeration, 2016, 70: 33-41. |
[1] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[2] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[3] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[4] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[5] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[6] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[7] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[8] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[9] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[10] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[11] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[14] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[15] | 刘广平, 陆振能, 龚宇烈. 高温热泵蒸汽系统的动态响应及扰动优化[J]. 化工进展, 2023, 42(4): 1719-1727. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |