化工进展 ›› 2018, Vol. 37 ›› Issue (11): 4121-4134.DOI: 10.16085/j.issn.1000-6613.2018-0290
韦朝海1, 汝旋1, 杨兴舟1, 冯春华1, 魏永芬2, 李富生2
收稿日期:
2018-02-01
修回日期:
2018-05-07
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
韦朝海(1962-),男,教授,博士生导师,研究方向为水污染控制理论与技术。E-mail:cechwei@scut.edu.cn。
作者简介:
韦朝海(1962-),男,教授,博士生导师,研究方向为水污染控制理论与技术。E-mail:cechwei@scut.edu.cn。
基金资助:
WEI Chaohai1, RU Xuan1, YANG Xingzhou1, FENG Chunhua1, WEI Yongfen2, LI Fusheng2
Received:
2018-02-01
Revised:
2018-05-07
Online:
2018-11-05
Published:
2018-11-05
摘要: 在系统回顾污水生物处理活性污泥法的基础上,以生物氧化沟、生物好氧流化床、生物转盘、接触氧化法作为典型工艺案例,论述了通过氧传质来调控工艺过程节能效率的途径,包括气源风机、供风管线与输配、气液传质、液固传质等多步骤。讨论了水质成分/水质结构、表面活性剂、反应器特征、环境因素、工艺变化等因素对氧利用效能的影响,从风机性能与气体输送、工艺创新与反应器结构优化、微生物污泥与运行管理的结合提出基于氧调控的总体节能策略。建议加强科学基础、技术范围、规模放大的理论与实践探索,从污染物削减、碳减排、生态风险等方面提出更加全面的能量约束评价系统技术。
中图分类号:
韦朝海, 汝旋, 杨兴舟, 冯春华, 魏永芬, 李富生. 污水生物处理基于氧调控的节能策略[J]. 化工进展, 2018, 37(11): 4121-4134.
WEI Chaohai, RU Xuan, YANG Xingzhou, FENG Chunhua, WEI Yongfen, LI Fusheng. Energy saving strategy based on oxygen control in wastewater bio-treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4121-4134.
[1] PECCIA J, WESTERHOFF P. We should expect more out of our sewage sludge[J]. Environmental Science & Technology, 2015, 49(14):8271-8276. [2] TALAIEKHOZANI A, BAGHERI M, GOLI A, et al. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems[J]. Journal of Environmental Management, 2016, 170:186-206. [3] ALLEMAN J E, PRAKASAM T B S. Reflections on seven decades of AS history[J]. Water Pollution Control Federation, 1985, 55(5):436-443. [4] HENZE M, VAN LOOSDTECHT M C M, EKAMA G A, 等. 污水生物处理——原理、设计与模拟[M]. 施汉昌, 胡志荣, 周军, 等译. 北京:中国建筑工业出版社, 2011:1-5. HENZE M, VAN LOOSDTECHT M C M, EKAMA G A, et al. Biological wastewater treatment:principles, modelling and design[M]. SHI H C, HU Z R, ZHOU J, et al. trans. Beijing:China Architecture & Building Press, 2011:1-5. [5] 邓荣森. 氧化沟污水处理理论与技术[M]. 北京:化学工业出版社, 2006:221. DENG R S. Oxidation ditch sewage treatment theory and technology[M]. Beijing:Chemical Industry Press, 2006:221. [6] 郭频. AB法污水处理工艺功能升级试验研究[D]. 哈尔滨:哈尔滨工业大学, 2010. GUO P. Study on functional modification test of A-B wastewater treatment process[D]. Harbin:Harbin Institute of Technology, 2010. [7] ECKENFELDER JR W W. Industrial water pollution control (Photocopied Edition)[M]. 3rd ed. Beijing:Tsinghua University Press, 2012. [8] 荣杨. 基于CASS工艺的污水处理厂能耗分析与评价模型研究[D]. 成都:西华大学, 2016. RONG Y. The research of energy consumption analysis and evaluation model for sewage treatment plant based on CASS process[D]. Chengdu:Xihua University, 2016. [9] 汪慧贞, 吴俊奇. 活性污泥数学模型的发展和使用[J]. 中国给水排水, 1999(5):21-22. WANG H Z, WU J Q. Development and application of activated sludge mathematical model[J]. China Water &Wastewater, 1999(5):21-22. [10] 姚重华, 刘勇弟. 活性污泥过程数学模型进展[J]. 环境化学, 2002(6):521-527. YAO Z H, LIU Y D. Progress in mathematical modeling of activated sludge process[J]. Environmental Chemistry, 2002(6):521-527. [11] 李峰, 吴敏, 杨哲. 活性污泥数学模型在我国的研究进展[J]. 中国资源综合利用, 2007(11):21-23. LI F, WU M, YANG Z. Study progress on mathematical model of activated sludge in china[J]. China Resources Comprehensive Utilization, 2007(11):21-23. [12] HOLENDA B, DOMOKOS E, REDEY A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers & Chemical Engineering, 2008, 32(6):1270-1278. [13] 孟德良, 刘建广. 污水处理厂的能耗与能量的回收利用[J]. 给水排水, 2002(4):18-20. MENG D L, LIU J G. Sewage treatment plant energy consumption and energy recovery[J]. Water & Wastewater Engineering, 2002(4):18-20. [14] 杨春玲, 张有忱, 黎镜中. 新型气液混输型曝气增氧设备性能[J]. 化工进展, 2011, 30(3):483-487. YANG C L, ZHANG Y C, LI J Z. Study on aeration performance of a new gas-liquid increasing oxygen aeration equipment[J]. Chemical Industry and Engineering Progress, 2011,30(3):483-487. [15] 汤利华, 孟广耀. 曝气器的最优孔径分析[J]. 中国科学技术大学学报, 2006(7):775-780. TANG L H, MENG G Y. Analysis of optimum aperture of aerators[J]. Journal of University of Science and Technology of China, 2006(7):775-780. [16] 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010(3):585-589. LIU C, ZHANG L, YANG J L, et al. Characteristics of oxygen transfer in micro-bubble aeration[J]. Chinese Journal of Environmental Engineering, 2010(3):585-589. [17] 邹联沛, 赵洪涛, 刘知人, 等. 水质条件对氧传质影响的研究[J]. 中北大学学报(自然科学版), 2010(1):45-49. ZOU L P, ZHAO H T, LIU Z R, et al. Research on impact of water quality on oxygen transition[J]. Journal of North University of China(Nature Science Edition), 2010(1):45-49. [18] CHERN J M, CHOU S R, SHANG C S. Effects of impurities on oxygen transfer rates in diffused aeration systems[J]. Water Research, 2001, 35(13):3041-3048. [19] 张玉魁, 张硌, 施汉昌. 新型生物流化反应器氧转移的特性[J]. 中国环境科学, 2003(5):100-104. ZHANG Y K, ZHANG G, SHI H C. Oxygen transfer character in a new type of biological fluidized reactor[J]. China Environmental Science, 2003(5):100-104. [20] LIU Y S, WU H Y, HO K P. Characterization of oxygen transfer conditions and their effects on Phaffiar hodozyma growth and carotenoid production in shake-flask cultures[J]. Biochemical Engineering Journal, 2006, 27(3):331-335. [21] HAO X, LIU R, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87:424-431. [22] GU Y, LI Y, LI X, et al. The feasibility and challenges of energy self-sufficient wastewater treatment plants[J]. Applied Energy, 2017, 204:1463-1475. [23] SHAMMAS N K, WANG L K. Oxidation ditch[M]//Handbook of Environmental Engineering. Totowa:Humana Press, 2009:513-538. [24] XIA S B, LIU J X. An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment[J]. Process Biochemistry, 2004, 39(9):1111-1117. [25] 刘家富, 吕斌, 曹红涛, 等. 卡鲁塞尔2000氧化沟的调试及运行[J]. 中国给水排水, 2004(11):101-103. LIU J F, LÜ B, CAO H T, et al. Commissioning operation and management of carrousel 2000 oxidation ditch[J]. China Water & Wastewater, 2004(11):101-103. [26] LUO L, LI W M, DENG Y S, et al. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model[J]. Journal of Environmental Sciences, 2005, 17(5):808-812. [27] 马昭, 刘玉玲, 巩书涵, 等. 基于ASM2D模型对奥贝尔氧化沟工艺的模拟研究[J]. 环境工程学报, 2016(12):6947-6955. MA Z, LIU Y L, GONG S H, et al. Simulation research of orbal oxidation ditch process based on ASM2D[J]. Chinese Journal of Environmental Engineering, 2016(12):6947-6955. [28] LESAGE N, SPERANDIO M, LAFFORGUE C, et al. Calibration and application of a 1-D model for oxidation ditches[J]. Chemical Engineering Research & Design, 2003, 81(A9):1259-1264. [29] CHEN L, FENG Q. Two-phase flow model applied in the oxidation ditch[J]. Advanced Materials Research, 2014, 838-841:1659-1662. [30] SOUZA R R, BRESOLIN I, BIONI T L, et al. The performance of a three-phase fluidized bed reactor in treatment of wastewater with high organic load[J]. Brazilian Journal of Chemical Engineering, 2004, 21(2):219-227. [31] JUAN L, HUA S O, CHAO H W, et al. Novel multistep physical/chemical and biological integrated system for coking wastewater treatment:technical and economic feasibility[J]. Journal of Water Process Engineering, 2016, 10:98-103. [32] DU F, LI Z, ZHANG A. Study on advanced treatment of papermaking wastewater by fluidized bed lactase bioreactor[J]. Materials Research Innovations, 2015, 19:928-935. [33] 邓志毅, 韦朝海, 吴锦华, 等. 新型A/O生物流化床处理高浓食品加工废水[J]. 中国给水排水, 2007(4):65-69. DENG Z Y, WEI C H, WU J H, et al. Application of new A/O biological fluidized bed process in high concentration food processing wastewater treatment[J]. China Water & Wastewater, 2007(4):65-69. [34] PAPIRIO S, VILLA-GOMEZ D K, ESPOSITO G, et al. Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(23):2545-2580. [35] RABAH F, DAHAB M F. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors[J]. Water Research, 2004, 38(17):3719-3728. [36] GÒDIA F, SOLÀ C. Fluidized-bed bioreactors[J]. Biotechnology Progress, 1995, 11(5):479-497. [37] ZHANG T, WE C H, REN Y, et al. Advances in airlift reactors:modified design and optimization of operation conditions[J]. Reviews in Chemical Engineering, 2017, 33(2):163-182. [38] 范丹, 廖建波, 韦聪, 等. 焦化废水处理工程运行能耗的单元解析模型——以OHO流化床工艺为例[J]. 环境科学学报, 2016(10):3709-3719. FAN D, LIAO J B, WEI C, et al. Unit analytical model of energy consumption during the operation of coking wastewater treatment plant:a case study of OHO fluidized bed process[J]. Acta Scientiae Circumstantiae, 2016(10):3709-3719. [39] ZHAO J, JIANG Y, YAN B, et al. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant[J]. Environmental Toxicology and Chemistry, 2014, 33(9):1967-1975. [40] 黄会静, 韦朝海, 吴超飞, 等. 焦化废水生物处理A/O/H/O工艺中氰化物的去除特性[J]. 化工进展, 2011, 30(5):1141-1146. HUANG H J, WEI C H, WU C F, et al. Characteristics of cyanide degradation in A/O/H/O coking wastewater treatment[J]. Chemical Industry and Engineering Progress, 2011, 30(5):1141-1146. [41] 易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014(9):2190-2198. YI X Y, WEI C H, WU C F, et al. Identification and transformation of nitrogen compounds in coking wastewater during O/H/O biological treatment process[J]. Acta Scientiae Circumstantiae, 2014(9):2190-2198. [42] ZHANG W, WEI C, AN G. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes[J]. Environmental Science-Processes & Impacts, 2015, 17(5):975-984. [43] ZHANG W, WEI C, YAN B, et al. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants[J]. Environmental Science and Pollution Research, 2013, 20(9):6418-6432. [44] ZHANG W, WEI C, CHAI X, et al. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant[J]. Chemosphere, 2012, 88(2):174-182. [45] 李湘溪, 吴超飞, 吴海珍, 等. 焦化废水处理过程中盐分变化及其影响因素[J]. 化工进展, 2016, 35(11):3690-3700. LI X X, WU C F, WU H Z, et al. The changes of salt and its influencing factors during coking wastewater treatment[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3690-3700. [46] 张倩倩, 魏维利, 王俊安, 等. 生物转盘技术研究进展[J]. 中国水运(下半月), 2014(2):182-184. ZHANG Q Q, WEI W L, WANG J A, et al. Research progress of biological wheel technology[J]. China Water Transport, 2014(2):182-184. [47] 吴为中, 王占生. 不同生物接触氧化法的净化效果及其生物膜特性的比较[J]. 环境科学学报, 2000(s1):44-50. WU W Z, WANG Z S. Comparison of biological contact oxidation processes and the characteristics of the biofilms[J]. Acta Scientiae Circumstantiae, 2000(s1):44-50. [48] 蒋晓阳, 熊文军, 刘子正, 等. 竹制填料生物接触氧化工艺处理污染河水[J]. 环境工程学报, 2014(1):178-183. JIANG X Y, XIONG W J, LIU Z Z, et al. Experimental study on treatment of polluted water by a biological contact oxidation process filled with bamboo filler[J]. Chinese Journal of Environmental Engineering, 2014(1):178-183. [49] 汪艳霞, 许立新, 杨云龙. 膜反应器中填料的应用[J]. 科技情报开发与经济, 2003(8):169-170. WANG Y X, XU L X, YANG Y L. Application of fillers in membrane reactors[J]. Technology Information Development & Economy, 2003(8):169-170. [50] 韩梅, 高伟, 赵志伟, 等. 悬浮填料-沸石BAF处理低温高氨氮污染源水效能[J]. 中国给水排水, 2015(1):32-35. HAN M, GAO W, ZHAO Z W, et al. Efficiency of biological aerated filter with suspended media and zeolite for treatment of low-temperature and high ammonia nitrogen source water[J]. China Water & Wastewater, 2015(1):32-35. [51] GARCIA-OCHOA F, GOMEZ E, SANTOS V E, et al. Oxygen uptake rate in microbial processes:an overview[J]. Biochemical Engineering Journal, 2010, 49(3):289-307. [52] 韦朝海, 吴锦华, 吴超飞, 等. 新型内构件内循环三相流化床氧传递特性的研究[J]. 中国环境科学, 2001(6):28-31. WEI C H, WU J H, WU C F, et al. Study on the characteristics of oxygen transfer in new-type structure inner loop three-phase fluidized bed[J]. China Environmental Science, 2001(6):28-31. [53] 桑军强, 张锡辉, 孟庆宇. 水处理中的无泡供氧技术[J]. 中国给水排水, 2003(11):25-28. SANG J Q, ZHANG X H, MENG Q Y. Bubble-free oxygen treatment in water treatment[J]. China Water & Wastewater, 2003(11):25-28. [54] 殷峻, 陈英旭. 膜生物反应器中的膜污染问题[J]. 环境污染治理技术与设备, 2001(3):62-68. YIN J, CHEN Y Q. Membrane fouling in membrane bioreactors[J]. Techniques and Equipment for Environmental Pollution Control, 2001(3):62-68. [55] 高用贵, 江景杰, 李成海, 等. 纯氧曝气在垃圾焚烧厂渗滤液处理系统中的实验分析[J]. 环境工程学报, 2016(10):5689-5694. GAO Y G, JIANG J J, LI C H, et al. Experimental analysis of pure-oxygen aeration in waste incineration plant leachate treatment system[J]. Chinese Journal of Environmental Engineering, 2016(10):5689-5694. [56] 熊家晴, 舒炜, 王雷, 等. 深井曝气法处理城市污泥中试研究[J]. 中国给水排水, 2016(19):129-132. XIONG J Q, SHU W, WANG L, et al. Pilot-scale study on deep well aeration method for treatment of municipal sewage sludge[J]. China Water & Wastewater, 2016(19):129-132. [57] 郭振英, 吕荣湖, 孙惠东. 高效好氧生物技术及其在污水处理中的应用[J]. 化工进展, 2008, 27(10):1533-1537. GUO Z Y, LÜ R H, SUN H D. Aerobic bioreactors with high efficiency and their application in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2008, 27(10):1533-1537. [58] LEE I, LIM H, JUNG B, et al. Evaluation of aeration energy saving in two modified activated sludge processes[J]. Chemosphere, 2015, 140(s1):72-78. [59] 任源, 韦朝海, 吴超飞, 等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报, 2007(7):1094-1100. REN Y, WEI C H, WU C F, et al. Environmental and biological characteristics of coking wastewater[J]. Acta Scientiae Circumstantiae, 2007(7):1094-1100. [60] 韦聪, 李磊, 吕文英, 等. 工业废水COD(Cr)测定方法与技术发展过程分析[J]. 中国测试, 2017(7):1-9. WEI C, LI L, LÜ W Y, et al. Analysis of the development of the industrial wastewater COD Cr determination method and technology[J]. China Measurement & Test, 2017(7):1-9. [61] 陈旭露, 王洪臣, 齐鲁, 等. 阴离子表面活性剂对微孔曝气氧传质过程影响的研究[J]. 环境科学学报, 2013(2):395-400. CHEN X L, WANG H C, QI L, et al. Effects of anionic surfactant on oxygen mass transfer in the fine bubble aeration[J]. Acta Scientiae Circumstantiae, 2013(2):395-400. [62] 王军, 方亮, 刘延来, 等. ALR中表面活性物质对氧气液传质影响[J]. 大连理工大学学报, 2003(6):733-736. WANG J, FAN L, LIU Y L, et al. Effect of surfactant on mass transfer of oxygen in ALR[J]. Journal of Dalian University of Technology, 2003(6):733-736 [63] 张涛. 内循环流化床反应器流动传质特性的计算流体力学模拟研究[D]. 广州:华南理工大学, 2012. ZHANG T. Simulation of mass transfer and hydrodynamic characteristics in internal loop fluidized bed reactor by computational fluid dynamics method[D]. Guangzhou:South China University of Technology, 2012. [64] LU X P, DING J, WANG Y R, et al. Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors[J]. Chemical Engineering Science, 2000, 55(12):2257-2263. [65] 张智, 柴华, 李柏林. A2O氧化沟缺氧区三维流场模拟及结构形式优化[J]. 环境工程学报, 2012(1):46-50. ZHANG Z, CHAI H, LI B L. Simulation on three-dimensional flow field and improvement on structure of anoxic zone of A2O oxidation ditch[J]. Chinese Journal of Environmental Engineering, 2012(1):46-50. [66] 杨宁, 王旭, 郭雪松, 等. 立体循环一体化氧化沟(IODVC)导流板结构优化研究[J]. 环境科学学报, 2016(3):914-919. YANG N, WANG X, GUO X S, et al. Structural optimization of guide-plates in an integrated oxidation ditch with vertical circle (IODVC)[J]. Acta Scientiae Circumstantiae, 2016(3):914-919. [67] 朱家亮, 陈祥佳, 张涛, 等. 基于CFD的内构件强化内循环流化床流场结构分析[J]. 环境科学学报, 2011(6):1212-1219. ZHU J L, CHEN X J, ZHANG T, et al. Computational fluid dynamics simulation of hydrodynamics in an internal-loop fluidized bed reactor with a funnel-shaped internal[J]. Acta Scientiae Circumstantiae, 2011(6):1212-1219. [68] ZHANG T, WE C, REN Y, et al. Advances in airlift reactors:modified design and optimization of operation conditions[J]. Reviews in Chemical Engineering, 2017, 33(2):163-182. [69] LUO L, YUAN J, XIE P, et al. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates[J]. Chemical Engineering Research and Design, 2013, 91(12):2377-2388. [70] GLUZ M D, MERCHUK J C. Modified airlift reactors:the helical flow promoters[J]. Chemical Engineering Science Chemical Reaction Engineering, 1996, 51(11):2915-2920. [71] FAYOLLE Y, COCKX A, GILLOT S, et al. Oxygen transfer prediction in aeration tanks using CFD[J]. Chemical Engineering Science, 2007, 62(24):7163-7171. [72] 陈梓晟, 张涛, 麦礼杰, 等. 正方形流化床结构参数改变和内构件强化的数值模拟解析[J]. 化工进展, 2017, 36(6):1997-2009. CHEN Z S, ZHANG T, MAI L J, et al. Analysis for numerical optimization on square fluidized bed with altering structural parameters and internals reinforcement[J]. Chemical Industry and Engineering Progress, 2017, 36(6):1997-2009. [73] RUSSELL A B, THOMAS C R, LILLY M D. The influence of vessel height and top-section size on the hydrodynamic characteristics of airlift fermentors[J]. Biotechnology and Bioengineering, 1994, 43(1):69-76. [74] WEILAND P. Influence of draft tube diameter on operation behavior of airlift loop reactors[J]. Khawarizmi Engineering Journal, 2010, 6(2):374-385. [75] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:a review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342. [76] MURAKAMI T, SUZUKI Y, NAGASAWA H, et al. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Processing Technology, 2009, 90(6):778-783. [77] KWON E E, KIM S, JEON Y J, et al. Biodiesel production from sewage sludge:new paradigm for mining energy from municipal hazardous material[J]. Environmental Science & Technology, 2012, 46(18):10222-10228. [78] DONATELLO S, CHEESEMAN C R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA):a review[J]. Waste Management, 2013, 33(11):2328-2340. |
[1] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[2] | 应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479. |
[3] | 胡锦文, 孟广源, 张之杰, 张宁, 张芯婉, 陈鹏, 李童, 刘勇弟, 张乐华. 人工智能在电化学水处理过程中的应用[J]. 化工进展, 2022, 41(S1): 497-506. |
[4] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[5] | 李海涛, 汪东. 精对苯二甲酸生产废水处理与CO2协同利用技术的实践与展望[J]. 化工进展, 2022, 41(3): 1132-1135. |
[6] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[7] | 郭超然, 黄勇, 朱文娟, 陈丽媛, 王灵芝, 张悦, 徐楚天, 李大鹏. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633. |
[8] | 杜明辉, 王勇, 高群丽, 张耀宗, 孙晓明. 臭氧微气泡处理有机废水的效果与机制[J]. 化工进展, 2021, 40(12): 6907-6915. |
[9] | 李东梅, 吴丹萍, 吴敏, 潘波. 污水处理厂运行工况对温室气体排放的影响[J]. 化工进展, 2021, 40(12): 6897-6906. |
[10] | 李帅旗,王汉治,冯自平,何世辉,宋文吉. 耦合过热蒸汽干燥的MVR蒸发结晶系统热力性能分析[J]. 化工进展, 2020, 39(2): 439-445. |
[11] | 仇宏暄,余义昌,黎城君,郜洪文. SiO2/BiOBr光催化材料制备及其对含油废水的处理[J]. 化工进展, 2019, 38(9): 4085-4094. |
[12] | 马双忱, 范紫瑄, 温佳琪, 马岚, 赵保华, 张金柱, 孙尧. 基于模糊层次分析的燃煤电厂脱硫废水处理可利用技术评价[J]. 化工进展, 2018, 37(11): 4451-4459. |
[13] | 吴海珍, 韦聪, 于哲, 韦景悦, 吴超飞, 韦朝海. 废水好氧生物处理工艺中氧的传质与强化的理论与实践[J]. 化工进展, 2018, 37(10): 4033-4043. |
[14] | 王汉治, 李帅旗, 黄冲, 何世辉, 宋文吉, 冯自平. 喷气增焓型单级MVR蒸发结晶系统性能分析[J]. 化工进展, 2018, 37(09): 3312-3319. |
[15] | 陆清华, 李沅瑾, 宋凤丹, 陈昊, 齐随涛. MnFe2O4的合成及其非均相Fenton法降解工业废水的性能[J]. 化工进展, 2018, 37(08): 3021-3028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |