化工进展 ›› 2018, Vol. 37 ›› Issue (09): 3512-3519.DOI: 10.16085/j.issn.1000-6613.2018-0229

• 材料科学与技术 • 上一篇    下一篇

海藻酸钠/二氧化硅杂化微球结构与吸附性能

曹仕文1, 张鸿1,2, 孟驰涵1, 邹新全1, 周炜东1, 于跃1,2, 郭静1,2   

  1. 1 大连工业大学纺织与材料工程学院, 辽宁 大连 116034;
    2 辽宁省功能纤维及复合材料工程研究中心, 辽宁 大连 116034
  • 收稿日期:2018-01-25 修回日期:2018-05-30 出版日期:2018-09-05 发布日期:2018-09-05
  • 通讯作者: 张鸿,博士,教授。
  • 作者简介:曹仕文(1993-),男,硕士研究生,主要研究方向为功能高分子材料设计制备。E-mail:805297913@qq.com。
  • 基金资助:
    国家自然科学基金项目(51773024)。

Structure and properties of sodium alginate/silica hybrid microspheres

CAO Shiwen1, ZHANG Hong1,2, MENG Chihan1, ZOU Xinquan1, ZHOU Weidong1, YU Yue1,2, GUO Jing1,2   

  1. 1 School of Textile & Materials Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China;
    2 Functional Fiber and Composite Materials in Liaoning Province Engineering Research Center, Dalian 116034, Liaoning, China
  • Received:2018-01-25 Revised:2018-05-30 Online:2018-09-05 Published:2018-09-05

摘要: 利用海藻酸钠(SA)和正硅酸四乙酯(TEOS)为原料,并利用醇解TEOS提供二氧化硅(SiO2)源与SA分子结构上的羟基(-OH)进行反应,制备一系列不同组分的杂化微球。采用旋转流变仪(DHR)、傅里叶变换红外光谱(FTIR)、X-射线光谱(XRD)、热重分析仪(TG)、扫描电子显微镜(SEM)和氮气吸附-脱附方法(BET)对杂化溶液的流变性能以及杂化微球的化学结构、结晶能力、热分解能力、微球形貌、比表面积和孔径进行分析,并研究了其对亚甲基蓝(MB)和重金属铜(Cu2+)的吸附能力。结果表明:SA/SiO2杂化溶液体系黏度下降,在初始剪切速率25s-1时杂化溶液黏度比SA黏度低了2.2Pa·s;FTIR图说明SA中羟基与TEOS中的硅氧键反应生成硅氧碳键,TEOS与SA发生化学反应;杂化微球结晶曲线中CA结晶特征峰强度降低,同时出现SiO2的结晶特征峰;杂化微球分解温度由250℃提升到310℃,热分解温度提高;BET测试得到海藻酸钙(CA)比表面积为7.254m2/g,孔径为19.65nm,CA/SiO2杂化微球的比表面积为49.151m2/g,孔径为21.75nm,杂化微球比表面积提高,孔径类型为介孔;当MB初始浓度为100mg/L时,SA/SiO2杂化微球去除率达到87.09%;当Cu2+初始浓度为2.5g/L时,SA/SiO2杂化微球去除率达到86.8%。

关键词: 杂化材料, 海藻酸钠, 二氧化硅, 亚甲基蓝, 重金属铜离子, 吸附剂

Abstract: In this study, sodium alginate (SA) and tetraethylorthosilicate (TEOS) were used as raw materials to prepare hybrid microspheres with varying amounts of TEOS, where silica (SiO2), the alcoholysis product of TEOS, was introduced into SA by reacting with hydroxyl groups in SA. Flowing property of the aqueous solution to prepare the hybrid solution, and the hybrid microspheres chemical structure, crystallization capacity, thermostability together with the morphology of as-prepared microspheric absorbent were characterized by rheometer, Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), thermal gravimetric analyzer (TGA) and scanning electron micrope (SEM). In addition, adsorption capacity of the microspheric absorbent on methylene blue (MB) and heavy metal copper (Cu2+) were studied. The results showed that the viscosity of the hybrid solution was lower than that of SA solution by 2.2Pa·s at the initial shear rate of 25s-1, indicating that the viscosity of the SA/SiO2 hybrid solution system decreased. The FTIR spectra showed that the hydroxyl group in SA reacted with the silicon-oxygen bond in TEOS to generate the silicon-oxygen-carbon bond, TEOS reacted with SA. The intensity of the characteristic crystalline peaks of CA in the hybrid microsphere crystallization curve decreased, and the crystallization peak of SiO2 appeared at the same time. The introduction of SiO2 in SA/SiO2 microspheres reduced the crystallization ability of the hybrid microspheres. The decomposition temperature of the hybrid microspheres increased from 250℃ to 310℃, indicating an increase in the thermal decomposition temperature. The specific surface area of calcium alginate (CA) was 7.254m2/g and the pore size was 19.65nm, while those of CA/SiO2 hybrid microspheres was 49.151m2/g and 21.75nm, respectively. It showed that the specific surface area of hybrid microspheres increased, and the pore size was at the level of mesoporous. When MB initial concentration was 100mg/L, the adsorption removal rate of SA/SiO2 hybrid microspheres was 87.09%. When the initial concentration of Cu2+ was 2.5g/L, the adsorption removal rate of SA/SiO2 hybrid microspheres was 86.8%.

Key words: hybrid materials, sodium alginate, silica, methylene blue, heavy metal copper ion, adsorbents

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn