[1] OKADA Y,SASAKI E,WATANABE E,et al. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. Int. J. Hydrogen Energy,2006,31(10):1348-1356. [2] PRADHAN A U,SHUKLA A,PANDE J V,et al. A feasibility analysis of hydrogen delivery system using liquid organic hydrides[J]. Int. J. Hydrogen Energy,2011,36(1):680-688. [3] NAGATAKE S,HIGO T,OGO S,et al. Dehydrogenation of methylcyclohexane over Pt/TiO2 catalyst[J]. Catal. Lett.,2016,146(1):54-60. [4] ICHIKAWA M. Organic liquid carrier for hydrogen storage[J]. Solid-State Hydrogen Storage,2008,30(4):500-531. [5] SCHERER G W H,NEWSON E. Analysis of the seasonal energy storage of hydrogen in liquid organic hydrides[J]. Int. J. Hydrogen Energy,1998,23(1):19-25. [6] SCHERER G W H,NEWSON E,WOKAUN A. Economic analysis of the seasonal storage of electricity with liquid organic hydrides[J]. Int. J. Hydrogen Energy,1999,24(12):1157-1169. [7] DELUCHI M A. Hydrogen vehicles:an evaluation of fuel storage,performance,safety,environmental impacts,and cost[J]. Int. J. Hydrogen Energy,1989,14(2):81-130. [8] TAUBE M,RIPPIN D W T,CRESSWELL D L,et al. A system of hydrogen-powered vehicles with liquid organic hydrides[J]. Int. J. Hydrogen Energy,1983,8(3):213-225. [9] TAUBE M,RIPPIN D,KNECHT W,et al. A prototype truck powered by hydrogen from organic liquid hydrides[J]. Int. J. Hydrogen Energy,1985,10(9):595-599. [10] GRUNENFELDER N F,SCHUCAN T H. Seasonal storage of hydrogen in liquid organic hydrides:description of the second prototype vehicle[J]. Int. J. Hydrogen Energy,1989,14(8):579-586. [11] KARIYA N,FUKUOKA A,ICHIKAWA M. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under "wet-dry multiphase conditions"[J]. Appl. Catal:A,2002,233(1/2):91-102. [12] KLVANA D,TOUZANI A,CHAOUKI J,et al. Dehydrogenation of methylcyclohexane in a reactor coupled to a hydrogen engine[J]. Int. J. Hydrogen Energy,1991,16(1):55-60. [13] NEWSON E,HAUETER T,HOTTINGER P,et al. Seasonal storage of hydrogen in stationary systems with liquid organic hydrides[J]. Int. J. Hydrogen Energy,1998,23(10):905-909. [14] BINIWALE R B,RAYALU S,DEVOTTA S,et al. Chemical hydrides:a solution to high capacity hydrogen storage and supply[J]. Int. J. Hydrogen Energy,2008,33(1):360-365. [15] RAHIMPOUR M R,VAKILI R,POURAZADI E,et al. Enhancement of hydrogen production via coupling of MCH dehydrogenation reaction and methanol synthesis process by using thermally coupled heat exchanger reactor[J]. Int. J. Hydrogen Energy,2011,36(5):3371-3383. [16] SHUKLA A A,GOSAVI P V,PANDE J V,et al. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts[J]. Int. J. Hydrogen Energy,2010,35(9):4020-4026. [17] SHUKLA A,KARMAKAR S,BINIWALE R B. Hydrogen delivery through liquid organic hydrides:considerations for a potential technology[J]. Int. J. Hydrogen Energy,2012,37(4):3719-3726. [18] GRETZ J,BASELT J P,ULLMANN O,et al. The 100 MW euro-Quebec hydro-hydrogen pilot project[J]. Int. J. Hydrogen Energy,1990,15(6):419-424. [19] GRETZ J,DROLET B,KLUYSKENS D,et al. Status of the hydro-hydrogen pilot project (EQHHPP)[J]. Int. J. Hydrogen Energy,1994,19(2):169-174. [20] 王锋,杨运泉,王威燕,等. 芳烃储氢技术研究进展[J]. 化工进展,2010,29(10):1877-1884. WANG F,YANG Y Q,WANG W Y,et al. Progress in hydrogen chemical storage technologies with aromatics[J]. Chemical Industry and Engineering Progress,2010,29(10):1877-1884. [21] ZHANG C,LIANG X,LIU S. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char[J]. Int. J. Hydrogen Energy,2011,36(15):8902-8907. [22] WANG Y,SHAH N,HUMAN G.Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts[J]. Energy Fuels,2004,18(5):1429-1433. [23] PHAM D T,TETSUYA S,MASAHIRO M. Continuous hydrogen evolution from cyclohexanes over platinum catalysts supported on activated carbon fibers[J]. Fuel Process Technol.,2008,89(4):415-418. [24] CROMWELL D K,VASUDEVAN P T,PAWELEC B,et al. Enhanced methylcyclohexane dehydrogenation to toluene over Ir/USY catalyst[J]. Catal. Today,2016,259(1):119-129. [25] Li X Y,Ma D,Bao X H. Dispersion of Pt catalysts supported on activated carbon and their catalytic performance in methyl cyclohexane dehydrogenation[J]. Chin. J. Catal.,2008,29(3):259-263. [26] SAITO A,ARAMAKI K,HODOSHIMA S. Efficient hydrogen generation from organic chemical hydrides by using catalytic reactor on the basis of superheated liquid-film concept[J]. Chem. Eng. Sci.,2008,63(20):4935-4941. [27] ALI J K,NEWSON E J,RIPPIN D W T. Exceeding equilibrium conversion with a catalytic membrane reactor for the dehydrogenation of methylcyclohexane[J]. Chem. Eng. Sci.,1994,49(13):2129-2134. [28] TAUBE P,TAUBE M A. Liquid organic carrier of H2 as a fuel for automobiles[J]. Adv. Hydrogen Energy,1981,2:1077-1083. [29] KLVANA D,CHAOUKI J,KUSOHORSKY D,et al. Catalytic storage of hydrogen:hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions[J]. Appl. Catal.,1988,42(1):121-130. [30] GRÜNENFELDER N F,SCHUCAN T H. Seasonal storage of hydrogen in liquid organic hydrides:description of the second prototype vehicle[J]. Int. J. Hydrogen Energy,1989,14(8):579-586. [31] YOLCULAR S,OLGUN O. Ni/Al2O3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production[J]. Catal. Today,2008,138(3/4):198-202. [32] 陈卓,杨运泉,包建国,等. 氢能载体甲基环己烷在Ni/γ-Al2O3上的脱氢反应[J]. 化工进展,2010,29(3):484-489. CHEN Z,YANG Y Q,BAO J G,et al. Catalytic performance of Ni/γ-Al2O3 for hydrogen carrier methylcyclohexane dehydrogenation[J]. Chemical Industry and Engineering Progress,2010,29(3):484-489. [33] YOSHIMI O,EIJI S,WATANABE E,et al. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. Int. J. Hydrogen Energy,2006,31(10):1348-1356. [34] JOUTHIMURUGESAN K,BHATIA S,SRIVASTAVA R D. Kinetics of dehydrogenation of methylcyclohexane over a platinum rhenium alumina catalyst in the presence of added hydrogen[J]. Ind. Eng. Chem. Fundamen,1985,24(4):433-438. [35] COUGHLIN R W,KAWAKAMI K,HASAN A. Activity,yield patterns,and coking behavior of Pt and Pt-Re catalysts during dehydrogenation of methylcyclohexane:Ⅰ. In the absence of sulfur[J]. J. Catal.,1984,88(1):150-162. [36] 王锋,杨运泉,王威燕. Ni-Pt/γ-Al2O3催化剂用于甲基环己烷催化脱氢的研究[J]. 燃料化学学报,2012,40(9):1128-1134. WANG F,YANG Y Q,WANG W Y. Catalytic performance of Ni-Pt/γ-Al2O3 in methylcyclohexane dehydrogenation[J]. Journal of Fuel Chemistry and Technology,2012,40(9):1128-1134. [37] SHUKLA A A,GOSAVI P V,PANDE J V,et al. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts[J]. Int. J. Hydrogen Energy,2012,35(9):4020-4026. [38] 陈进富,陆绍信,朱亚杰. K2O对Pt-Sn/Al2O3催化剂表面酸性及MCH脱氢稳定性的影响[J]. 燃料化学学报,1998,26(6):543-547. CHEN J F,LU SH X,ZHU Y J. Influences of K2O on acidity and MCH dehydrogenation stability of Pt-Sn/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology,1998,26(6):543-547. [39] 陈进富,俞英,蔡卫权. Li2O对Pt-Sn/Al2O3催化剂表面酸性及MCH脱氢稳定性的影响[J]. 太阳能学报,2002,23(6):782-785. CHEN J F,YU Y,CAI W Q. Influences of Li2O on acidity and MCH dehydrogenation performance of Pt-Sn/γ-Al2O3 catalyst[J]. Acta Energiae Solaris Sinic,2002,23(6):782-785. [40] 苏君雅,丁梅,杨青. 用于脱氢反应的新型覆炭镍催化剂[J]. 石油化工,1996,25(6):391-395. SU J Y,DING M,YANG Q. Carbon-covered ni catalysts for dehydrogenation[J]. Petrochemical Technology,1996,25(6):391-395. [41] 杨继涛,郝雪松,苏君雅,等. 覆炭载体Pt-Sn催化剂脱氢活性及抗结焦性能的研究[J]. 石油化工,2002,31(12):955-957. YANG J T,HAO X S,SU J Y,et al. Dehydrogenation activity and anti-coking performance of Pt-Sn catalyst supported on carbon covered alumina[J]. Petrochemical Technology,2002,31(12):955-957. [42] 杨继涛,黄亚茹,苏君雅,等. 氧化铝覆炭载体的制备及抗结焦性能考察[J].石油大学学报(自然科学版),2003,27(2):98-104. YANG J T,HUANG Y R,SU J Y,et al. Preparation and anti-coking capability of carbon-covered alumina carrier[J]. Journal of the University of Petroleum,China(Edition of Natural Science),2003,27(2):98-104. [43] 王锋,杨运泉,胡拥军,等. Ni-Cu/CCA用于甲基环己烷脱氢性能研究[J]. 现代化工,2015,35(10):66-70. WANG F,YANG Y Q,HU Y J,et al. Preparation and catalytic performance of Ni-Cu/CCA catalyst[J]. Modern Chemical Industry,2015,35(10):66-70. [44] 贺恒,杨晨熹,欧阳键,等. Ni-Cu/γ-Al2O3催化剂的制备及其脱氢反应研究[J]. 精细化工,2011,28(7):675-684. HE H,YANG CH X,OU Y J,et al.Reparation of catalyst Ni-Cu/γ-Al2O3 and its research of dehydrogenation reaction[J]. Fine Chemicals,2011,28(7):675-684. [45] KARIYA N,FUKUOKA A,UTAGAWA T,et al. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts[J]. Appl. Catal. A:Gen.,2003,247(2):247-259. [46] SHUKLA A,PANDE J V,BINIWALE R B. Dehydrogenation of methylcyclohexane over Pt/V2O5 and Pt/Y2O3 for hydrogen delivery applications[J]. Int. J. Hydrogen Energy,2012,37(4):3350-3357. [47] ITOH N,WATANABE S,KAWASOE K,et al. A membrane reactor for hydrogen storage and transport system using cyclohexane-methylcyclohexane mixtures[J]. Desalination,2008,234(1/2/3):261-269. [48] HODOSHIMA S,HIROSHI A,YASUKAZU S. Liquid-film-type catalytic decalin dehydrogeno-aromatization for long-term storage and long-distance transportation of hydrogen[J]. Int. J. Hydrogen Energy,2003,28(2):197-204. [49] 朱刚利,杨伯伦. 液体有机氢化物储氢研究进展[J]. 化学进展,2009,21(12):2760-2770. ZHU G L,YANG B L. Hydrogen storage using liquid organic hydrides[J]. Progress in Chemistry,2009,21(12):2760-2770. [50] SULTAN O,SHAW H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers[EB/OL].[1975-06-01]. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5000657. [51] 姜召,徐杰,方涛. 新型有机液体储氢技术现状与展望[J]. 化工进展,2012,31(s1):315-322. JIANG ZH,XU J,FANG T. Current situation and prospect for hydrogen storage technology with new organic liqiud[J]. Chemical Industry and Engineering Progress,2012,31(s1):315-322. [52] 闫云飞,张力,李丽仙,等. 膜催化反应器及其制氢技术的研究进展[J]. 无机材料学报,2011,26(12):1233-1242. YAN Y F,ZHANG L,LI L X,et al. Progress in catalytic membrane reactors for high purity hydrogen production[J]. Journal of Inorganic Materials,2011,26(12):1233-1242. [53] ITOH N,TAMURA E,HARA S,et al. Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor[J]. Catal. Today,2003,82(1/2/3/4):119-125. [54] JEONG B H,SOTOW K I,KUSAKABE K. Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor[J]. J. Membr. Sci.,2003,224(1):151-158. [55] 陈雅萍,李永红. 纳米分子筛膜的研究进展[J]. 化工进展,2004,23(6):615-623. CEHN Y P,LI Y H. Development of studies on nano-zeolite membranes[J]. Chemical Industry and Engineering Progress,2004,23(6):615-623. [56] BINIWALE R B,ICHIKAWA M. Thermal imaging of catalyst surface during catalytic dehydrogenation of cyclohexane under spray-pulsed conditions[J]. Chem. Eng. Sci.,2007,62(24):7370-7377. [57] BINIWALE R B,KARIYA N,YAMASHIRO H,et al. Heat transfer and thermographic analysis of catalyst surface during multiphase phenomena under spray-pulsed conditions for dehydrogenation of cyclohexane over Pt catalysts[J]. J. Phys. Chem. B,2006,110(7):3189-3196. [58] BINIWALE R B,MIZUNO A,ICHIKAWA M. Hydrogen production by reforming of iso-octane using spray-pulsed injection and effect of non-thermal plasma[J]. Appl. Catal.:A,2004,276(1/2):169-177. |