[1] U.S. Energy Information Administration(EIA). Technically recoverable shale oil and shale gas resources:an assessment of 137 shale formations in 41 countries outside the united states[EB/OL].[2015-09-24]. http://www.eia.gov/analysis/studies/worldshalegas/. [2] 张金川,金之钧,袁明生. 页岩气成藏机理和分布[J]. 天然气工业,2004,24(7):15-18. ZHANG J C,JIN Z J,YUAN M S. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry,2004,24(7):15-18. [3] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin,2002,86(11):1921-1938. [4] CHALMERS G R,BUSTIN R M. Lower Cretaceous gas shales in northeastern British Columbia,Part I:geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology,2008,56(1):1-21. [5] 闫建萍,张同伟,李艳芳,等. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报,2013,38(5):805-811. YANG J P,ZHANG T W,LI Y F,et al. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society,2013,38(5):805-811. [6] 薛海涛,卢双舫,付晓泰,等. 烃源岩吸附甲烷实验研究[J]. 石油学报,2003,24(6):45-50. XUE H T,LU S F,FU X T,et al. Experimental study on adsorbability of methane in source rock[J]. Acta Petrolei Sinica,2003,24(6):45-50. [7] 薛华庆,王红岩,刘洪林,等. 页岩吸附性能及孔隙结构特征——以四川盆地龙马溪组页岩为例[J]. 石油学报,2013,34(5):826-832. XUE H Q,WANG H Y,LIU H L,et al. Adsorption capability and aperture distribution characteristics of shales:taking the Longmaxi formation shale of Sichan Basin as an example[J]. Acta Petrolei Sinica,2013,34(5):826-832. [8] GUO H,JIA W,PENG P,et al. The composition and its impact on the methane sorption of lacustrine shales from the Upper Triassic Yanchang Formation,Ordos Basin,China[J]. Marine and Petroleum Geology,2014,57:509-520. [9] ZHANG T,ELLIS G S,RUPPEL S C,et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry,2012,47:120-131. [10] 欧志鹏. 纳米孔隙中甲烷扩散的分子动力学研究[D]. 成都:西南石油大学,2014. OU Z P. Molecular kinetics of methane in the nanometer pores[D]. Chengdu:Southwest Petroleum University,2014. [11] MOSHER K,HE J,LIU Y,et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology,2013,109:36-44. [12] FIROUZI M,RUPP E C,LIU C W,et al. Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale[J]. International Journal of Coal Geology,2014,121:123-128. [13] FIROUZI M,ALNOAIMI K,KOVSCEK A,et al. Klinkenberg effect on predicting and measuring helium permeability in gas shales[J]. International Journal of Coal Geology,2014,123:62-68. [14] SEN W,QI H F,MING Z H A,et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Petroleum Exploration and Development,2015,42(6):844-851. [15] 刘冰,史俊勤,沈跃,等. 石墨狭缝中甲烷吸附的分子动力学模拟[J]. 计算物理,2013, 30(5):692-699. LIU B,SHI J Q,SHEN Y,et al. Molecular kinetics of methane in the graphite slits[J]. Chinese Journal of Computation Physics,2013,30(5):692-699. [16] LIU Y,WILCOX J. CO2 adsorption on carbon models of organic constituents of gas shale and coal[J]. Environmental Science & Technology,2010,45(2):809-814. [17] BERKOWITZ N. The chemistry of coal[M]. Elsevier,1985. [18] 茹鑫. 油页岩热解过程分子模拟及实验研究[D]. 长春:吉林大学,2013. XIN R. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Changchun:Jilin University,2013. [19] 郑仲. 神东煤镜质组结构特征及其对CH4,CO2和H2O吸附的分子模拟[D]. 太原:太原理工大学,2009. ZHEN Z. Molecular simulation study of the structure of Shendong vitrinite and the adsorption of CH4,CO2 and H2O[D]. Taiyuan:Taiyuan University of Technology,2009. [20] 王三跃. 褐煤结构的分子动力学模拟及量子化学研究[D]. 太原:太原理工大学,2004. WANG S Y. Study of lignite structure by molecular dynamics simulation and quantum chemistry[D]. Taiyuan:Taiyuan University of Technology,2004. [21] CANTOR D M. Nuclear magnetic resonance spectrometric determination of average molecular structure parameters for coal-derived liquids[J]. Analytical Chemistry,1978,50(8):1185-1187. [22] QI Y,WANG F. Study and evaluation of aging performance of petroleum asphalts and their constituents during oxygen absorption. III. Average molecular structure parameter changes[J]. Petroleum Science and Technology,2004,22(3/4):275-286. [23] DONG X G,LEI Q F,FANG W J,et al. Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy[J]. Thermochimica Acta,2005,427(1):149-153. [24] 窦菲菲. 川东龙马溪组下部页岩储层特征研究[D]. 北京:中国矿业大学,2014. DOU F F. Reservoir characteristics research of the lower Longmaxi formation shale in East of Sichuan[D]. Beijing:China University of Mining,2014. [25] 王哲,李贤庆,张吉振,等. 四川盆地不同区块龙马溪组页岩气地球化学特征对比[J]. 中国煤炭地质,2016,28(2):22-27. WANG Z,LI X Q,ZHANG J Z,et al. Longmaxi formation shale gas geochemical features comparison between different blocks in Sichuan Basin[J]. Coal Geology of China,2016,28(2):22-27. [26] 甘辉. 长宁地区龙马溪组页岩气资源潜力分析[D]. 成都:西南石油大学,2015. GAN H. Shale gas resource potential analysis in Longmaxi formation of Changning district[D]. Chengdu:Southwest Petroleum University,2015. [27] TREWHELLA M J,POPLETT I J F,GRINT A. Structure of green river oil shale kerogen:determination using solid state 13C NMR spectroscopy[J]. Fuel,1986,65(4):541-546. [28] 杨万里,李永康,高瑞祺,等. 松辽盆地陆相生油母质的类型与演化模式[J]. 中国科学,1981(8):1000-1008. YANG W L,LI Y K,GAO R Q,et al. The type and evolution mode of Terrestrial kerogen in Songliao basin[J]. Science China,1981(8):1000-1008. [29] 李振广,秦匡宗. 用13CNMR CP/MAS波谱表征干酪根的性质[J]. 石油学报,1990,11(4):25-32. LI Z G,QIN K Z. Nature of kerogen characterized by solid state 13C NMR spectroscopy[J]. Acta Petrolei Sinica,1990,11(4):25-32. [30] SOLUM M S,PUGMIRE R J,GRANT D M. Carbon-13 solid-state NMR of Argonne-premium coals[J]. Energy & Fuels,1989,3(2):187-193. [31] 熊德明,马万云,张明峰,等. 干酪根类型及生烃潜力确定新方法[J]. 天然气地球科学,2014,25(6):898-905. XIONG D M,MA W Y,ZHANG M F,et al. New method for the determination of kerogen type and the hydrocarbon potential[J]. Natural Gas Geoscience,2014,25(6):898-905. |