[1] 裴晋昌. 低温等离子体物理化学基础及其应用(一)[J]. 印染, 2005(11):39-42, 50. [2] Li Kai, Tang Xiaolong, Yi Honghong, et al. Research on manganese oxide catalysts surface pretreated with non-thermal plasma for NO catalytic oxidation capacity enhancement[J]. Applied Surface Science, 2013, 264:557-562. [3] 涂昕, 满卫东, 游志恒, 等. 微波等离子体化学气相沉积法制备石墨烯的研究进展[J]. 真空与低温, 2014, 20(2):63-70. [4] 陈杰, 翁扬, 袁细宁, 等. 活性炭吸附协同介质阻挡放电降解甲硫醚[J]. 高校化学工程学报, 2011, 25(3):495-500. [5] Shao Huaiyu, Wang Yuntao, Xu Hairuo, et al. Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction[J]. Materials Science and Engineering:B, 2004, 110(2):221-226. [6] Donnelly Vincent M, Kornblit Avinoam. Plasma etching:Yesterday, today, and tomorrow[J]. Journal of Vacuum Science & Technology A, 2013, 31(5):050825-050848. [7] Krishnasamy Navaneetha Pandiyaraj, Vengatasamy Selvarajan, Rajendrasing R. Deshmukh, et al. Low pressure DC glow discharge air plasma surface treatment of polyethylene (PE) film for improvement of adhesive properties[J]. Plasma Science and Technology, 2013, 15(1):56-63. [8] Zhou Quan, Zhao Zongbin, Chen Yongsheng, et al. Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012(13):6061-6066. [9] 李喜, 李杰, 谢宇彤, 等. 大气压介质阻挡放电综述[J]. 高能量密度物理, 2013(2):86-92. [10] Ulrich Kogelschatz. Dielectric-barrier discharges:Their history, discharge physics, industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1):1-46. [11] Gagnon Hervé, Piyakis Konstantinos, Wertheimer Michael R. Energy dissipation in noble gas atmospheric pressure glow discharges (APGD)[J]. Plasma Processes and Polymers, 2014, 11(2):106-109. [12] Graham W G, Nersisyan G. Atmospheric pressure glow discharges[J]. American Institute of Physics, 2006, 876(1):250-259. [13] 刘志强, 贾鹏英, 刘铁. 直流大气压辉光放电高能电子密度的空间分布[J]. 光谱学与光谱分析, 2013, 33(9):2321-2324. [14] 江南, 我国低温等离子体研究进展(Ⅰ)[J]. 物理, 2006, 35(2):130-138. [15] 杨岳, 黄碧纯, 叶代启. 低温等离子体对多孔材料的表面改性研究进展[J]. 化工进展, 2008, 27(1l):1760-1763. [16] 罗凡. 低温等离子体改性碳材料吸附性能的研究[D]. 杭州:浙江大学, 2009. [17] 王辉, 孙岩洲, 方志, 等. 介质阻挡放电低温等离子体的产生[J]. 印染, 2005(19):5-7. [18] 黄先亮, 炭素材料的应用现状及发展[J]. 炭素技术, 2013(1):30-35. [19] 邱毓昌, 张文元, 施围. 高电压工程[M]. 西安:西安交通大学出版社, 1995. [20] Wang Wenhui, Huang Bichun, Wang Lishan, et al. Oxidative treatment of multi-wall carbon nanotubes with oxygen dielectric barrier discharge plasma[J]. Surface and Coatings Technology, 2011, 205(21-22):4896-4901. [21] Tang Shoufeng, Lu Na, Li Jie, et al. Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenol-saturated granular activated carbon[J]. Separation and Purification Technology, 2012, 95(19):73-79. [22] Lu Na, Li Jie, Wang Xingxing, et al.Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration[J]. Plasma Chemistry and Plasma Processing, 2012, 32(1):109-121. [23] Tang Shoufeng, Lu Na, Li Jie, et al. Removal of bisphenol in water using an integrated granular activated carbon preconcentration and dielectric barrier discharge degradation treatment[J]. Thin Solid Films, 2012, 521:257-260. [24] Qu Guangzhou, Lu Na, Li Jie, et al. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2009, 172(1):472-478. [25] Li J. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber[J]. Applied Surface Science, 255(20):8682-8684. [26] Tang Shoufeng, Lu Na, Li Jie, et al. Improved phenol decomposition and simultaneous regeneration of granular activated carbon by the addition of a titanium dioxide catalyst under a dielectric barrier discharge plasma[J]. Carbon, 2013, 53:380-390. [27] Santos A L, Botelho E, Kostov K G, et al. Atmospheric plasma treatment of carbon fibers for enhancement of their adhesion properties[J]. IEEE Transactions on Plasma Science, 2013, 41(2):319-324. [28] 解强, 李兰亭, 李静, 等. 活性炭低温氧/氮等离子体表面改性的研究[J]. 中国矿业大学学报, 2005, 34(6):688-693. [29] Huang Huacun, Ye Daiqi, Huang Bichun. Vanadium supported on viscose-based activated carbon fibers modified by oxygen plasma for the SCR of NO[J]. Catalysis Today, 2008, 139:100-108. [30] Hueso J L, Espinós J P, Caballero A, et al. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas[J]. Carbon, 2007, 45(1):89-96. [31] Ju Young Yook, Jaeho Jun, Soonjong Kwak. Amino functionalization of carbon nanotube surfaces with NH3 plasma treatment[J]. Applied Surface Science, 2010, 256:6942-6944. [32] Chen Changlun, Liang Bo, Lu Di, et al. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment[J]. Carbon, 2010, 48:939-948. [33] Inagaki N, Narushima K, Hashimoto H, et al. Implantation of amino functionality into amorphous carbon sheet surfaces by NH3 plasma[J]. Carbon, 2007, 45:797-804. [34] Lu Haisheng, Knut Gottfried, Nicole Ahner, et al. Investigation of CH4, NH3, H2 and He plasma treatment on porous low-k films and its effects on resisting moisture absorption and ions penetration[J]. Microelectronic Engineering, 2013, 106:85-90. [35] Wei Yan, Yang Ran, Chen Xing, et al. A cation trap for anodic stripping voltammetry:NH3-plasma treated carbon nanotubes for adsorption and detection of metal ions[J]. Analytica Chimica Acta, 2012, 755:54-61. [36] Kodama Satoshi, Sekiguchi Hidetoshi. Estimation of point of zero charge for activated carbon treated with atmospheric pressure non-thermal oxygen plasmas[J]. Thin Solid Films, 2006, 506-507, 327-330. [37] Kodama Satoshi, Habaki Hiroaki, Hidetoshi Sekiguchi, et al. Surface modification of adsorbents by dielectric barrier discharge[J]. Thin Solid Films, 2002, 407:151-155. [38] Li Hao, Liang Hui, He Fang, et al. Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites[J]. Surface and Coatings Technology, 2009, 203(10-11):1317-1321. [39] da Silva L L Goncalves, Ferreira L G, Lima Santo S A, et al. Treatment of reticulated vitreous carbon by dielectric barrier discharge plasma for electrodes production[J]. Plasma Science, IEEE Transact, 2013, 41(12):3207-3213. [40] Yi Honghong, Zhao Shunzheng, Tang Xiaolong, et al. Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma[J]. Fuel, 2014, 128:268-273. [41] Saxena S, Ray AU, Kapil A, et al. Development of a new polypropylene-based suture:Plasma grafting, surface treatment, characterization, and biocompatibility studies[J]. Macromolecular Bioscience, 2011, 11(3):373-82. [42] 郭建君, 孙晋良, 任慕苏, 等. 冷等离子处理对碳纤维表面及复合材料性能的影响[J]. 高分子材料科学与工程, 2010, 26(4):85-88. [43] Luo Honglin, Xiong Guangyao, Ren Kaijing, et al. Air DBD plasma treatment on three-dimensional braided carbon fiber-reinforced PEEK composites for enhancement of in vitro bioactivity[J]. Surface and Coatings Technology, 2014, 242:1-7. [44] Huang Huacun, Ye Daiqi, Huang Bichun, et al. Vanadium supported on viscose-based activated carbon fibers modified by oxygen plasma for the SCR of NO[J]. Catalysis Today, 2008, 139(1-2):100-108. [45] Kusano Y, Mortensen H, Stenum B, et al. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement[J]. International Journal of Adhesion and Adhesives, 2007, 27(5):402-408. [46] 汪星星, 李杰, 鲁娜, 等. 双介质阻挡放电法再生吸附五氯酚的活性炭[J]. 化工环保, 2011(2):97-100. [47] Lu Na, Li Jie, Wang Xingxing, et al. Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration[J]. Plasma Chemistry and Plasma Processing, 2012, 32(1):109-121. [48] Hadavifar Mojtaba, Bahramifar Nader, Younesi Habibollah, et al. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups[J]. Chemical Engineering Journal, 2014, 237:217-228. [49] Qu Guangzhou, Lu Na, Li Jie, et al. Decomposition of pentachlorophenol using combination of densification by granular activated carbon adsorption and dielectric barrier discharge[J]. Journal of Hazardous Materials, 2009, 172(1):472-478. [50] Lee Dong Soo, Hong-Sang Hee, Paek Kwang-Hyun, et al. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment[J]. Surface and Coatings Technology, 2005, 200(7):2277-2282. [51] Wu Guangqian, Zhang Xin, Hui Hui, et al. Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon[J]. Chemical Engineering Journal, 2012, 185-186:201-210. [52] Che Yao, Zhou Jiayong, Wang Zuwu. Plasma modification of activated carbon fibers for adsorption of SO2[J]. Plasma Science and Technology, 2013, 15(10):1047-1052. [53] Qu Guangzhou, Li Jie, Liang Dongli, et al. Surface modification of a granular activated carbon by dielectric barrier discharge plasma and its effects on pentachlorophenol adsorption[J]. Journal of Electrostatics, 2013, 71(4):689-694. [54] Tang Shen, Lu Na, Wang Jiku, et al. Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment[J]. American Chemical Society, 2007, 111(4):1820-1829. [55] Qu Guangzhou, Li Jie, Wu Yan, et al. Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma[J]. Chemical Engineering Journal, 2009, 146(2):168-173. [56] Ji Puhui, Qu Guangzhou, Li Jie. Effects of dielectric barrier discharge plasma treatment on pentachlorophenol rem oval of granular activated carbon[J]. Plasma Science and Technology, 2013, 15(10):1059-1065. [57] Park Soo-Jin, Kim Byung-Joo. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers[J]. Colloid and Interface Science, 2004, 275:590-595. |