化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6644-6655.DOI: 10.16085/j.issn.1000-6613.2022-0351

• 资源与环境化工 • 上一篇    下一篇

大气压介质阻挡放电及协同催化剂脱硝研究进展

张维1(), 汪宗御1,2(), 郭玉1, 杨孟飞1, 李政楷1, 常超1, 张继锋1,2, 纪玉龙1()   

  1. 1.大连海事大学轮机工程学院,辽宁 大连 116026
    2.浙江清华长三角研究院,浙江 嘉兴 314006
  • 收稿日期:2022-03-08 修回日期:2022-05-26 出版日期:2022-12-20 发布日期:2022-12-29
  • 通讯作者: 汪宗御,纪玉龙
  • 作者简介:张维(1991—),男,博士研究生,研究方向为等离子体脱硝。E-mail:zhangwei090530@126.com
  • 基金资助:
    中国博士后科学基金(2021M690496);国家重点研发计划(SQ2019YFE011597);国家自然科学基金(51876019);大连市杰出青年科技人才支持计划(2020RJ03);中央高校基本科研业务费(3132019331)

Research progress of NO x removal by combination of atmospheric pressure dielectric barrier discharge and catalysis

ZHANG Wei1(), WANG Zongyu1,2(), GUO Yu1, YANG Mengfei1, LI Zhengkai1, CHANG Chao1, ZHANG Jifeng1,2, JI Yulong1()   

  1. 1.Marine Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
    2.Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
  • Received:2022-03-08 Revised:2022-05-26 Online:2022-12-20 Published:2022-12-29
  • Contact: WANG Zongyu, JI Yulong

摘要:

受绿色生态和可持续发展战略理念的驱动,废气排放对环境造成的危害备受关注。NO x 作为废气的主要污染物之一,是废气污染物控制的重点与难点。基于此,本文介绍了传统后处理脱硝技术的优缺点及应用现状,回顾了介质阻挡放电(DBD)基础研究,分析了DBD脱硝性能,重点阐述了DBD协同催化剂脱硝及脱硝机理。分析指出:①DBD驱动电源与反应器结构是制约脱硝性能的关键因素;②单独DBD技术脱硝性能较差,而DBD协同催化填充床技术展现出优异的脱硝性能和较高的N2选择性;③等离子体协同催化脱硝机理研究主要包括等离子体特征参数诊断、流体模型验证、等离子体传播机制分析以及原位表征,而在等离子体催化理论计算方面的研究较为缺乏。因此,未来DBD协同催化脱硝技术应立足如下几个方面发展:研发高功率、低能耗电源,提升废气NO x 处理量;优化反应器结构,提升脱硝的效率与选择性;设计与构筑适宜于DBD环境的脱硝催化剂;深入全面分析DBD协同催化剂脱硝机理。

关键词: 介质阻挡放电, 催化剂, 填充床, 选择性, 脱硝机理

Abstract:

Driven by the concept of green ecology and sustainable development strategy, exhaust emissions to the environment has attracted much attention. As one of the main pollutants of exhaust gas, NO x is the focus and difficulty of exhaust gas pollutant control. The advantages, disadvantages and application status of traditional post-treatment de-NO x technologies are introduced. The basic researches of dielectric barrier discharge are reviewed. The synergistic de-NO x performance and mechanism by DBD and catalyst are analyzed. It is pointed out that:①the DBD power supply and the reactor structure are the key factors restricting the de-NO x performance; ②the de-NO x performance of DBD only is not satisfactory, but the combination of DBD with catalytic packed bed exhibits excellent de-NO x efficiency and high N2 selectivity; ③the researches on de-NO x mechanism of plasma-assisted catalyst mainly include plasma characteristic parameter diagnosis, fluid model verification, plasma propagation mechanism analysis and in-situ characterization. However, the research on the theoretical calculation of plasma catalysis is limited. Therefore, we propose that the future development of DBD de-NO x technology should be based on ①the high-power and high-efficiency power supply to improve the NO x treatment capacity; ②the reactor structure optimization to improve the de-NO x efficiency and N2 selectivity; ③suitable design and construct of the de-NO x catalyst for DBD environment; ④the comprehensive analysis of the de-NO x mechanism of DBD synergistic catalyst.

Key words: dielectric barrier discharge, catalyst, packed bed, selectivity, de-NO x mechanism

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn