化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6644-6655.DOI: 10.16085/j.issn.1000-6613.2022-0351
张维1(), 汪宗御1,2(), 郭玉1, 杨孟飞1, 李政楷1, 常超1, 张继锋1,2, 纪玉龙1()
收稿日期:
2022-03-08
修回日期:
2022-05-26
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
汪宗御,纪玉龙
作者简介:
张维(1991—),男,博士研究生,研究方向为等离子体脱硝。E-mail:zhangwei090530@126.com。
基金资助:
ZHANG Wei1(), WANG Zongyu1,2(), GUO Yu1, YANG Mengfei1, LI Zhengkai1, CHANG Chao1, ZHANG Jifeng1,2, JI Yulong1()
Received:
2022-03-08
Revised:
2022-05-26
Online:
2022-12-20
Published:
2022-12-29
Contact:
WANG Zongyu, JI Yulong
摘要:
受绿色生态和可持续发展战略理念的驱动,废气排放对环境造成的危害备受关注。NO x 作为废气的主要污染物之一,是废气污染物控制的重点与难点。基于此,本文介绍了传统后处理脱硝技术的优缺点及应用现状,回顾了介质阻挡放电(DBD)基础研究,分析了DBD脱硝性能,重点阐述了DBD协同催化剂脱硝及脱硝机理。分析指出:①DBD驱动电源与反应器结构是制约脱硝性能的关键因素;②单独DBD技术脱硝性能较差,而DBD协同催化填充床技术展现出优异的脱硝性能和较高的N2选择性;③等离子体协同催化脱硝机理研究主要包括等离子体特征参数诊断、流体模型验证、等离子体传播机制分析以及原位表征,而在等离子体催化理论计算方面的研究较为缺乏。因此,未来DBD协同催化脱硝技术应立足如下几个方面发展:研发高功率、低能耗电源,提升废气NO x 处理量;优化反应器结构,提升脱硝的效率与选择性;设计与构筑适宜于DBD环境的脱硝催化剂;深入全面分析DBD协同催化剂脱硝机理。
中图分类号:
张维, 汪宗御, 郭玉, 杨孟飞, 李政楷, 常超, 张继锋, 纪玉龙. 大气压介质阻挡放电及协同催化剂脱硝研究进展[J]. 化工进展, 2022, 41(12): 6644-6655.
ZHANG Wei, WANG Zongyu, GUO Yu, YANG Mengfei, LI Zhengkai, CHANG Chao, ZHANG Jifeng, JI Yulong. Research progress of NO x removal by combination of atmospheric pressure dielectric barrier discharge and catalysis[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6644-6655.
技术 | 主要反应原理 | 脱硝率 | 优缺点 | 应用现状 | 文献 |
---|---|---|---|---|---|
SCR | 80%~95%(中高温) | 较成熟,但占用空间大,投资及运行成本高,催化剂昂贵且易中毒,并伴有氨逃逸 | 多用于排放量较大的燃煤电力、柴油机脱硝 | [ | |
SNCR | <80%(850~1100℃) | 较成熟,投资及运行成本较低,氨逃逸较严重 | 多用于脱硝标准低的中小型煤电等行业 | [ | |
吸附法 | 碳基、沸石、分子筛等吸附NO NH3还原吸附剂再生 | 80%~90%(常温) | 设备简单,但吸附量小,吸附剂用量大,利用率低,再生困难 | 适用于NO x 排放浓度较低的领域 | [ |
氧化吸收法 | >85%(常温) | 操作简单,效率高,但投资及运行成本较高;NaClO2、HClO3价格昂贵,易腐蚀设备;H2O2易分解、耗量大 | 多用于石化行业及可用空间较小的旧船改造 | [ |
表1 传统废气脱硝处理技术特征分析
技术 | 主要反应原理 | 脱硝率 | 优缺点 | 应用现状 | 文献 |
---|---|---|---|---|---|
SCR | 80%~95%(中高温) | 较成熟,但占用空间大,投资及运行成本高,催化剂昂贵且易中毒,并伴有氨逃逸 | 多用于排放量较大的燃煤电力、柴油机脱硝 | [ | |
SNCR | <80%(850~1100℃) | 较成熟,投资及运行成本较低,氨逃逸较严重 | 多用于脱硝标准低的中小型煤电等行业 | [ | |
吸附法 | 碳基、沸石、分子筛等吸附NO NH3还原吸附剂再生 | 80%~90%(常温) | 设备简单,但吸附量小,吸附剂用量大,利用率低,再生困难 | 适用于NO x 排放浓度较低的领域 | [ |
氧化吸收法 | >85%(常温) | 操作简单,效率高,但投资及运行成本较高;NaClO2、HClO3价格昂贵,易腐蚀设备;H2O2易分解、耗量大 | 多用于石化行业及可用空间较小的旧船改造 | [ |
DBD结构设计 | 参数指标 | 主导因素 | 放电性能影响 | 应用现状 |
---|---|---|---|---|
电极材料 | 紫铜、不锈钢、铝合金、钨等 | 电导率、焦耳热、二次电子发射系数 | 较弱 | 紫铜 |
电极结构 | 圆棒、螺纹、齿状等 | 电场强度、放电均匀度 | 较弱 | 圆棒/螺纹 |
电极直径 | mm~cm量级 | 电场强度 | 显著 | — |
电介质材料 | 聚四氟乙烯、石英玻璃、陶瓷、聚合物/陶瓷复合材料 | 介电常数、电荷累积、击穿强度 | 显著 | 复合材料 |
放电间隙 | mm量级 | 处理时间、单位体积功率、电源 | 显著 | mm量级 |
装配形式 | 电极分段式结构、单体结构、多体复合结构 | 放电均匀度、能耗、等离子体空间分布能耗 | 显著 | 多段式结构 多体复合结构 |
表2 DBD反应器结构设计及性能分析
DBD结构设计 | 参数指标 | 主导因素 | 放电性能影响 | 应用现状 |
---|---|---|---|---|
电极材料 | 紫铜、不锈钢、铝合金、钨等 | 电导率、焦耳热、二次电子发射系数 | 较弱 | 紫铜 |
电极结构 | 圆棒、螺纹、齿状等 | 电场强度、放电均匀度 | 较弱 | 圆棒/螺纹 |
电极直径 | mm~cm量级 | 电场强度 | 显著 | — |
电介质材料 | 聚四氟乙烯、石英玻璃、陶瓷、聚合物/陶瓷复合材料 | 介电常数、电荷累积、击穿强度 | 显著 | 复合材料 |
放电间隙 | mm量级 | 处理时间、单位体积功率、电源 | 显著 | mm量级 |
装配形式 | 电极分段式结构、单体结构、多体复合结构 | 放电均匀度、能耗、等离子体空间分布能耗 | 显著 | 多段式结构 多体复合结构 |
参数指标 | 电介质材料 | |||
---|---|---|---|---|
石英玻璃 | 耐热玻璃 | 莫来石 | 陶瓷 | |
相对介电常数 | 3.8 | 4.6 | 6 | 9.6 |
激励电压 | ++++ | +++ | ++ | + |
气隙电压 | ++++ | + | ++ | + |
电介质电压 | ++++ | ++++ | ++ | + |
微放电通道 | ++ | + | + | ++++ |
寿命 | + | ++ | ++ | ++++ |
电流 | ++ | + | + | ++++ |
电荷累积 | ++ | + | + | ++++ |
焦耳热损耗 | ++++ | ++++ | +++ | + |
表面粗糙度 | + | + | +++ | ++++ |
表3 电介质材料对DBD放电特性的影响
参数指标 | 电介质材料 | |||
---|---|---|---|---|
石英玻璃 | 耐热玻璃 | 莫来石 | 陶瓷 | |
相对介电常数 | 3.8 | 4.6 | 6 | 9.6 |
激励电压 | ++++ | +++ | ++ | + |
气隙电压 | ++++ | + | ++ | + |
电介质电压 | ++++ | ++++ | ++ | + |
微放电通道 | ++ | + | + | ++++ |
寿命 | + | ++ | ++ | ++++ |
电流 | ++ | + | + | ++++ |
电荷累积 | ++ | + | + | ++++ |
焦耳热损耗 | ++++ | ++++ | +++ | + |
表面粗糙度 | + | + | +++ | ++++ |
模拟废气成分 | 反应条件 | NO脱除效率/% | N2选择性/% | 文献 |
---|---|---|---|---|
NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 22 | 0 | [ |
NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 40 | — | [ |
NO(500μL/L)、O2(5%)、N2 | 20℃、625mL/min | 47 | 27 | [ |
NO(400μL/L)、O2(5%)、N2 | 20℃、1L/min | 56 | 11.2 | [ |
NO(500μL/L)、O2(5%)、N2 | 20℃、0.1L/min | 34 | 2 | [ |
表4 DBD脱硝技术现状及脱除性能
模拟废气成分 | 反应条件 | NO脱除效率/% | N2选择性/% | 文献 |
---|---|---|---|---|
NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 22 | 0 | [ |
NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 40 | — | [ |
NO(500μL/L)、O2(5%)、N2 | 20℃、625mL/min | 47 | 27 | [ |
NO(400μL/L)、O2(5%)、N2 | 20℃、1L/min | 56 | 11.2 | [ |
NO(500μL/L)、O2(5%)、N2 | 20℃、0.1L/min | 34 | 2 | [ |
催化剂 | 模拟废气成分 | 反应条件 | 施加能量 | 脱除效率/% | N2选择性/% | 文献 |
---|---|---|---|---|---|---|
V2O5-WO3/TiO2 | NO(300μL/L)、O2(10%)、N2 | 100℃、2L/min | 30J/L | 88(NO x ) | 88 | [ |
V2O5/TiO2 | NO(400μL/L)、O2(10%)、N2 | 150℃、5L/min | 80J/L | 80(NO x ) | 80 | [ |
TiO2 | NO(570μL/L)、O2(21%)、N2 | 25℃、5L/min | 9kV | 55(NO) | — | [ |
HZSM-5 | NO(540μL/L)、O2(2.9%)、N2 | 25℃、1L/min | 900J/L | 50(NO) | 26 | [ |
Mn-Cu/ZSM5 | NO(500μL/L)、O2(6%)、N2 | 25℃、2L/min | 480J/L | 60(NO) | 30 | [ |
木纤维 | NO(300μL/L)、O2(5%)、N2 | 25℃、1L/min | 900J/L | 77(NO) | 59 | [ |
竹炭 | NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 800J/L | 74(NO) | 68 | [ |
MnCe/Ti | NO(400μL/L)、O2(6%)、N2 | 25℃、5L/min | 280J/L | 86.9(NO) | — | [ |
MOFs-CuBTC | NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 700J/L | 99.87(NO) | 99.87 | [ |
表5 DBD协同催化剂的脱硝性能
催化剂 | 模拟废气成分 | 反应条件 | 施加能量 | 脱除效率/% | N2选择性/% | 文献 |
---|---|---|---|---|---|---|
V2O5-WO3/TiO2 | NO(300μL/L)、O2(10%)、N2 | 100℃、2L/min | 30J/L | 88(NO x ) | 88 | [ |
V2O5/TiO2 | NO(400μL/L)、O2(10%)、N2 | 150℃、5L/min | 80J/L | 80(NO x ) | 80 | [ |
TiO2 | NO(570μL/L)、O2(21%)、N2 | 25℃、5L/min | 9kV | 55(NO) | — | [ |
HZSM-5 | NO(540μL/L)、O2(2.9%)、N2 | 25℃、1L/min | 900J/L | 50(NO) | 26 | [ |
Mn-Cu/ZSM5 | NO(500μL/L)、O2(6%)、N2 | 25℃、2L/min | 480J/L | 60(NO) | 30 | [ |
木纤维 | NO(300μL/L)、O2(5%)、N2 | 25℃、1L/min | 900J/L | 77(NO) | 59 | [ |
竹炭 | NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 800J/L | 74(NO) | 68 | [ |
MnCe/Ti | NO(400μL/L)、O2(6%)、N2 | 25℃、5L/min | 280J/L | 86.9(NO) | — | [ |
MOFs-CuBTC | NO(500μL/L)、O2(8%)、N2 | 25℃、0.5L/min | 700J/L | 99.87(NO) | 99.87 | [ |
57 | TANG Xiaolong, ZHANG Runcao, YI Honghong, et al. Byproducts generation characteristics of non-thermal plasma for NO conversion: effect of reaction conditions[J]. Plasma Chemistry and Plasma Processing, 2021, 41(1): 369-387. |
58 | GUO Xiurong, XU Yuefeng, CHEN Meng, et al. Study on the performance of NTP with wood fiber in NO removal[J]. Plasma Chemistry and Plasma Processing, 2020, 40(4): 921-936. |
59 | WANG Zongyu, KUANG Hailang, ZHANG Jifeng, et al. Diesel engine exhaust denitration using non-thermal plasma with activated carbon[J]. Reaction Chemistry & Engineering, 2020, 5(9): 1845-1857. |
60 | Young Sun MOK, Dong Jun KOH, SHIN Dong Nam, et al. Reduction of nitrogen oxides from simulated exhaust gas by using plasma–catalytic process[J]. Fuel Processing Technology, 2004, 86(3): 303-317. |
61 | NASONOVA Anna, PHAM Hung Cuong, KIM Dong Joo, et al. NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process[J]. Chemical Engineering Journal, 2010, 156(3): 557-561. |
62 | WANG Tao, ZHANG Xinyu, LIU Jun, et al. Effects of temperature on NO x removal with Mn-Cu/ZSM5 catalysts assisted by plasma[J]. Applied Thermal Engineering, 2018, 130: 1224-1232. |
63 | LIU Lianjun, YAO Zhijian, DENG Yu, et al. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem, 2011, 3(6): 978-989. |
64 | PATIL B S, CHERKASOV N, LANG J, et al. Low temperature plasma-catalytic NO x synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides[J]. Applied Catalysis B: Environmental, 2016, 194: 123-133. |
65 | PARK Sanghoo, CHOE Wonho, Cheorun JO. Interplay among ozone and nitrogen oxides in air plasmas: rapid change in plasma chemistry[J]. Chemical Engineering Journal, 2018, 352: 1014-1021. |
66 | LI Shuran, HUANG Yifan, WANG Feifei, et al. Fundamentals and environmental applications of non-thermal plasmas: multi-pollutants emission control from coal-fired flue gas[J]. Plasma Chemistry and Plasma Processing, 2013, 34(3): 579-603. |
67 | LI Ruinian, LIU Xin. Main fundamental gas reactions in denitrification and desulfurization from flue gas by non-thermal plasmas[J]. Chemical Engineering Science, 2000, 55(13): 2491-2506. |
68 | ŠIMEK M. Optical diagnostics of streamer discharges in atmospheric gases[J]. Journal of Physics D: Applied Physics, 2014, 47(46): 463001. |
69 | 白晗, 黄邦斗, 邱锦涛, 等. 基于场致激光二次谐波产生原理的纳秒脉冲电场非介入测量方法研究[J]. 中国电机工程学报, 2020, 40(17): 5700-5707. |
BAI Han, HUANG Bangdou, QIU Jintao, et al. Investigation on non-intrusive measurement of nanosecond-pulsed electric field based on electric field induced second harmonic generation[J]. Proceedings of the CSEE, 2020, 40(17): 5700-5707. | |
70 | GAO Yuan, DOU Liguang, ZHANG Shuai, et al. Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation[J]. Chemical Engineering Journal, 2020: 127693. |
71 | Adam OBRUSNíK, Petr BÍLEK, HODER Tomáš, et al. Electric field determination in air plasmas from intensity ratio of nitrogen spectral bands: Ⅰ. Sensitivity analysis and uncertainty quantification of dominant processes[J]. Plasma Sources Science and Technology, 2018, 27(8): 085013. |
72 | PARIS P, AINTS M, VALK F, et al. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas[J]. Journal of Physics D: Applied Physics, 2005. |
73 | KOZLOV K V, WAGNER H E, BRANDENBURG R, et al. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2001, 34(21): 3164-3176. |
74 | HUANG Bangdou, ZHANG Cheng, ADAMOVICH Igor, et al. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate[J]. Plasma Sources Science and Technology, 2020, 29(4): 044001. |
75 | AKIMOV D A, ZHELTIKOV A M, KOROTEEV N I, et al. Coherent Raman scattering in molecular hydrogen in a dc electric field[J]. Journal of Experimental & Theoretical Physics Letters, 1999, 70(6): 375-379. |
76 | WANG Weizong, KIM Hyun-Ha, VAN LAER Koen, et al. Streamer propagation in a packed bed plasma reactor for plasma catalysis applications[J]. Chemical Engineering Journal, 2018, 334: 2467-2479. |
77 | VAN LAER Koen, BOGAERTS Annemie. How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study[J]. Plasma Sources Science and Technology, 2017, 26(8): 085007. |
78 | MUJAHID Zaka-ul-Islam, KRUSZELNICKI Juliusz, HALA Ahmed, et al. Formation of surface ionization waves in a plasma enhanced packed bed reactor for catalysis applications[J]. Chemical Engineering Journal, 2020, 382: 123038. |
79 | ZHANG Quanzhi, BOGAERTS Annemie. Propagation of a plasma streamer in catalyst pores[J]. Plasma Sources Science and Technology, 2018, 27(3): 035009. |
1 | RICHTER Andreas, BURROWS John P, Hendrik Nüß, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437(7055): 129-132. |
2 | Carr EDWARD W, James CORBETT J. Ship compliance in emission control areas: technology costs and policy instruments[J]. Environmental science & technology, 2015, 49(16): 9584-9591. |
3 | PAOLUCCI Christopher, KHURANA Ishant, PAREKH Atish A, et al. Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction[J]. Science, 2017, 357(6354): 898-903. |
4 | WEI Yajuan, LIU Jia, SU Wei, et al. Controllable synthesis of Ce-doped α-MnO2 for low-temperature selective catalytic reduction of NO[J]. Catalysis Science & Technology, 2017, 7. |
5 | FU Shilong, SONG Qiang, YAO Qiang. Mechanism study on the adsorption and reactions of NH3, NO, and O2 on the CaO surface in the SNCR deNO x process[J]. Chemical Engineering Journal, 2016, 285: 137-143. |
6 | 李明宣, 宋崇林, 吕刚, 等. 钴改性水滑石基LNT催化剂制备及其NO x 吸附-还原和碳烟催化氧化性能[J]. 燃烧科学与技术, 2019, 25(03): 189-196. |
LI Mingxuan, SONG Chonglin, Gang LYU, et al. Preparation of cobalt doped hydrotalcite-based LNT catalysts and their performances of NO x adsorption-reduction and soot oxidation[J]. Journal of Combustion Science and Technology, 2019, 25(3): 189-196. | |
7 | LIN Fawei, WANG Zhihua, ZHANG Zhiman, et al. Flue gas treatment with ozone oxidation: an overview on NO, organic pollutants, and mercury[J]. Chemical Engineering Journal, 2020, 382: 123030. |
8 | HAN L, CAI S, GAO M, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: state of the art and future prospects[J]. Chem Reviews, 2019, 119(19): 10916-10976. |
9 | 陈欢哲, 何海霞, 万亚萌, 等. 燃煤烟气脱硝技术研究进展[J]. 应用化工, 2019, 48(5): 1146-1151. |
CHEN Huanzhe, HE Haixia, WAN Yameng, et al. Research progress of coal-fired flue gas denitrification technology[J]. Applied Chemical Industry, 2019, 48(5): 1146-1155. | |
10 | 杨忠凯, 武宁, 何如意, 等. 燃煤烟气同时脱硫脱硝技术研究进展[J]. 应用化工, 2020, 49(5): 1219-1225. |
YANG Zhongkai, WU Ning, HE Ruyi, et al. Research progress on simultaneous desulfurization and denitrification technology for coal-fired flue gas[J]. Applied Chemical Industry, 2020, 49(5): 1219-1225. | |
11 | STASIULAITIENE Inga, MARTUZEVICIUS Dainius, ABROMAITIS Vytautas, et al. Comparative life cycle assessment of plasma-based and traditional exhaust gas treatment technologies[J]. Journal of Cleaner Production, 2016, 112: 1804-1812. |
12 | WANG Han, YUAN Bo, HAO Runlong, et al. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas[J]. Chemical Engineering Journal, 2019, 378: 122155. |
13 | SIEMENS Werner. Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten[J]. Annalen der Physik, 1857, 178(9): 66-122. |
14 | 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 34(1): 1-11. |
WANG Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 34(1): 1-11. | |
15 | LU Mingze, WANG Xinxin, PU Yikang, et al. Study of atmospheric pressure glow discharge[J]. Plasma Sources Science Technology, 2003, 12(3): 358-361. |
16 | KONG Fei, CHANG Chao, MA Yiyang, et al. Surface modifications of polystyrene and their stability: a comparison of DBD plasma deposition and direct fluorination[J]. Applied Surface Science, 2018, 459: 300-308. |
17 | YAN Xiaoliang, ZHAO Binran, LIU Yuan, et al. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective[J]. Catalysis Today, 2015, 256: 29-40. |
18 | LI Shijie, DANG Xiaoqing, YU Xin, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review[J]. Chemical Engineering Journal, 2020, 388: 124275. |
19 | MA Siming, ZHAO Yongchun, YANG Jianping, et al. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 791-810. |
20 | GEORGE Adwek, SHEN Boxiong, CRAVEN Michael, et al. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 109702. |
80 | WANG Jiangen, YI Honghong, TANG Xiaolong, et al. Exceptional adsorptive capacity and kinetic of γ-Al2O3 for selective adsorption of NO assisted by nonthermal plasma[J]. Chemical Engineering Journal, 2019, 378: 122095. |
81 | STERE Cristina, CHANSAI Sarayute, GHOLAMI Rahman, et al. A design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions[J]. Catalysis Science & Technology, 2020, 10(5): 1458-1466. |
82 | XU Shanshan, CHANSAI Sarayute, SHAO Yan, et al. Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide[J]. Applied Catalysis B: Environmental, 2020, 268: 118752. |
83 | XU Shaojun, CHANSAI Sarayute, STERE Cristina, et al. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma[J]. Nature Catalysis, 2019, 2(2): 142-148. |
84 | VAKILI Reza, GHOLAMI Rahman, STERE Cristina E, et al. Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts[J]. Applied Catalysis B: Environmental, 2020, 260: 118195. |
21 | SHAO Tao, WANG Ruixue, ZHANG Cheng, et al. Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20. |
22 | 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358. |
MEI Danhua, FANG Zhi, SHAO Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358. | |
23 | 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380. |
SHI Yaowei, ZHOU Ruoyu, CUI Xinglei, et al. Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380. | |
24 | 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. |
SHAO Tao, ZHANG Cheng, WANG Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. | |
25 | CAI Yunkai, LU Lin, LI Peng. Study on the effect of structure parameters on NO oxidation in DBD reactor under oxygen-enriched condition[J]. Applied Sciences, 2020, 10(19): 6766. |
26 | ANAGHIZI Saeed Javadi, TALEBIZADEH Pouyan, RAHIMZADEH Hassan, et al. The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NO x removal[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 1944-1953. |
27 | 谢爱根, 张健, 刘斌, 等. 金属二次电子发射系数表达式[J]. 强激光与粒子束, 2012, 24(2): 481-485. |
XIE Aigen, ZHANG Jian, LIU Bin, et al. Formula for secondary electron yield from metal[J]. High Power Laser and Particle Beams, 2012, 24(2): 481-485. | |
28 | OZKAN A, DUFOUR T, BOGAERTS A, et al. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?[J]. Plasma Sources Science and Technology, 2016, 25(4): 045016. |
29 | ZHOU Xu, LIU Lintao, SUN Jiajia, et al. Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics[J]. Journal of Advanced Ceramics, 2021, 10(4): 778-789. |
30 | CHEN Zhuo, SHEN Zhonghui, LIU Yang, et al. Ultrahigh energy-density flexible dielectric films achieved by self-bundled polymer nanocluster in necklace-like arrangement[J]. Energy Storage Materials, 2020, 33: 1-10. |
31 | MEI Danhua, TU Xin. Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: effects of plasma processing parameters and reactor design[J]. Journal of CO2 Utilization, 2017, 19: 68-78. |
32 | LEE Byungjin, KIM Dong-Wook, PARK Dong-Wha. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite[J]. Chemical Engineering Journal, 2019, 357: 188-197. |
33 | NIU Guanghui, GUO Guangmeng, TANG Jie, et al. Design and electrical analysis of multi-electrode cylindrical dielectric barrier discharge plasma reactor[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 419-426. |
34 | 商克峰, 王美威, 鲁娜, 等. 沿面/体介质阻挡放电装置的放电及臭氧生成特性[J]. 高电压技术, 2021, 47(1): 353-359. |
SHANG Kefeng, WANG Meiwei, LU Na, et al. Discharge characteristics and ozone generation of surface/ volume hybrid dielectric barrier discharge devices [J]. High Voltage Engineering, 2021, 47(1): 353-359. | |
35 | 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. |
LI Heping, YU Daren, SUN Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. | |
36 | CUI Shaoping, HAO Runlong, FU Dong. Integrated method of non-thermal plasma combined with catalytical oxidation for simultaneous removal of SO2 and NO[J]. Fuel, 2019, 246: 365-374. |
37 | WANG Zongyu, KUANG Hailang, ZHANG Jifeng, et al. Nitrogen oxide removal by non-thermal plasma for marine diesel engines[J]. RSC Advances, 2019, 9(10): 5402-5416. |
38 | SRINIVASAN A D, RAJAGOPALA R, JAGADISHA N, et al. A laboratory investigation of pulsed discharged based techniques for engine exhaust treatment——effect of exhaust nature and operating conditions[J]. International Journal of Plasma Environmental Science and Technology, 2012, 6(3): 215-221. |
39 | MOHAPATRO Sankarsan, RAJANIKANTH Bangalore S. Studies on NO x removal from diesel engine exhaust using duct-type DBD reactor[J]. IEEE Transactions on Industry Applications, 2014, 51(3): 2489-2496. |
40 | MOHAPATRO Sankarsan, ALLAMSETTY Srikanth. NO x abatement from filtered diesel engine exhaust using battery-powered high-voltage pulse power supply[J]. High Voltage, 2017, 2(2): 69-77. |
41 | ZHANG Wei, WANG Zongyu, GUO Yu, et al. Experimental and mechanism research on the NO x removal by a novel liquid electrode dielectric barrier discharge reactor[J]. Chemical Engineering Journal, 2022: 136375. |
42 | WANG Tao, SUN Baomin, XIAO Haiping, et al. Effect of reactor structure in DBD for nonthermal plasma processing of NO in N2 at ambient temperature[J]. Plasma Chemistry and Plasma Processing, 2012, 32(6): 1189-1201. |
43 | PENG Mengqi, ZHAO Ran, XIA Min, et al. Study on the mechanism of NO removal by plasma-adsorption catalytic process[J]. Fuel, 2017, 200: 290-298. |
44 | GONG Xiaoli, ZHAO Ran, QIN Junqi, et al. Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature[J]. Chemical Engineering Journal, 2019, 358: 291-298. |
45 | YANG Lan, ZHANG Xiang, KAN Qing, et al. Effect of gas composition on nitric oxide removal from simulated flue gas with DBD-NPC method[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 3017-3026. |
46 | Indrek JÕGI, LEVOLL Erik, Jüri RAUD. Plasma oxidation of NO in O2:N2 mixtures: the importance of back-reaction[J]. Chemical Engineering Journal, 2016, 301: 149-157. |
47 | ZHAO Dan, YU Feng, ZHOU Amin, et al. High-efficiency removal of NO x using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 014020. |
48 | Christopher WHITEHEAD J. Plasma catalysis: challenges and future perspectives[J]. Plasma Catalysis, 2019: 343-348. |
49 | Christopher WHITEHEAD J. Plasma-catalysis: is it just a question of scale?[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 264-273. |
50 | BOGAERTS Annemie, TU Xin, Christopher WHITEHEAD J, et al. The 2020 plasma catalysis roadmap[J]. Journal of Physics D: Applied Physics, 2020, 53(44): 443001. |
51 | QU Miaomiao, CHENG Zhuowei, SUN Zhirong, et al. Non-thermal plasma coupled with catalysis for VOCs abatement: a review[J]. Process Safety and Environmental Protection, 2021, 153: 139-158. |
52 | QUOC AN H Than, PHAM HUU T, LE VAN T, et al. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: toluene removal[J]. Catalysis Today, 2011, 176(1): 474-477. |
53 | JIANG Nan, HU Jian, LI Jie, et al. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas[J]. Applied Catalysis B: Environmental, 2016, 184: 355-363. |
54 | WANG Jiangen, YI Honghong, TANG Xiaolong, et al. Simultaneous removal of SO2 and NO x by catalytic adsorption using γ-Al2O3 under the irradiation of non-thermal plasma: competitiveness, kinetic, and equilibrium[J]. Chemical Engineering Journal, 2020, 384: 123334. |
55 | TALEBIZADEH Pouyan, BABAIE Meisam, BROWN Richard, et al. The role of non-thermal plasma technique in NO x treatment: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 886-901. |
56 | RAVI V, Young Sun MOK, RAJANIKANTH B S, et al. Studies on nitrogen oxides removal using plasma assisted catalytic reactor[J]. Plasma Science and Technology, 2003, 5(6): 2057. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |