化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2777-2787.DOI: 10.16085/j.issn.1000-6613.2024-2055
• 合成材料利用 • 上一篇
收稿日期:2024-12-17
修回日期:2025-01-14
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
陈群
作者简介:杜心悦(1998—),女,硕士研究生,研究方向为聚合物材料阻燃改性。E-mail:1018536671@qq.com。
基金资助:
DU Xinyue(
), CHEN Shengchun, QIAN Junfeng, HE Mingyang, CHEN Qun(
)
Received:2024-12-17
Revised:2025-01-14
Online:2025-05-25
Published:2025-05-20
Contact:
CHEN Qun
摘要:
针对废旧纤维解聚典型单体对苯二甲酸高价值利用难度大、下游衍生产品品种少、用途受限等问题,提出了对苯二甲酸金属-有机框架材料(MOFs)作为协效剂应用于聚磷酸铵(APP)和三氧化二锑(Sb2O3)阻燃体系。将碱减量废水回收的对苯二甲酸分别与氢氧化锂、硝酸铝通过常温法和水热法制得Li-MOF和Al-MOF,然后通过熔融挤出共混,分别将APP/Li-MOF、Sb2O3/Al-MOF阻燃体系添加到聚乳酸(PLA)和软质聚氯乙烯(PVC)中制成PLA/APP/Li-MOF和PVC/Sb2O3/Al-MOF复合材料。采用X射线衍射仪、红外光谱、比表面积及微孔分析和热重对其进行了表征和分析,通过极限氧指数仪、垂直燃烧测定仪、锥型量热仪和万能试验机分别对复合材料进行了阻燃性能和力学性能测试。结果表明,与纯PLA相比,Li-MOF的少量加入可明显改善PLA复合材料阻燃性能,Li-MOF质量分数为1.5%的PLA/APP/Li-MOF复合材料阻燃效果最佳,材料的极限氧指数由20.3%提升至34.2%、阻燃等级由V-2提升至V-0、热释放速率峰值(PHRR)和总释放热(THR)均有所降低,残炭率也有所提高。与PVC/Sb2O3相比,Al-MOF的添加明显改善了PVC/Sb2O3/Al-MOF复合材料阻燃性能,当Al-MOF质量分数为5%时,材料的极限氧指数由28.5%提升至32.5%,同时拉伸强度和弹性模量分别提高了20.1%和166.5%。
中图分类号:
杜心悦, 陈圣春, 钱俊峰, 何明阳, 陈群. 废弃对苯二甲酸升级再造MOF材料及其阻燃应用[J]. 化工进展, 2025, 44(5): 2777-2787.
DU Xinyue, CHEN Shengchun, QIAN Junfeng, HE Mingyang, CHEN Qun. Upgrading waste terephthalic acid into MOF materials for flame retardant application[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2777-2787.
| 样品 | PLA/g | APP/g | Li-MOF/g |
|---|---|---|---|
| PLA① | 70 | 0 | 0 |
| PLA/15APP① | 59.5 | 10.5 | 0 |
| PLA/14.5APP/0.5Li-MOF① | 59.5 | 10.15 | 0.35 |
| PLA/14APP/1Li-MOF① | 59.5 | 9.8 | 0.7 |
| PLA/13.5APP/1.5Li-MOF① | 59.5 | 9.45 | 1.05 |
| PLA/13APP/2Li-MOF① | 59.5 | 9.1 | 1.4 |
| PLA/12.5APP/2.5Li-MOF① | 59.5 | 8.75 | 1.75 |
表1 PLA复合材料的组成配比
| 样品 | PLA/g | APP/g | Li-MOF/g |
|---|---|---|---|
| PLA① | 70 | 0 | 0 |
| PLA/15APP① | 59.5 | 10.5 | 0 |
| PLA/14.5APP/0.5Li-MOF① | 59.5 | 10.15 | 0.35 |
| PLA/14APP/1Li-MOF① | 59.5 | 9.8 | 0.7 |
| PLA/13.5APP/1.5Li-MOF① | 59.5 | 9.45 | 1.05 |
| PLA/13APP/2Li-MOF① | 59.5 | 9.1 | 1.4 |
| PLA/12.5APP/2.5Li-MOF① | 59.5 | 8.75 | 1.75 |
| 样品 | PVC/g | Ba-Zn热稳定剂/g | DINP/g | Sb2O3/g | Al-MOF/g |
|---|---|---|---|---|---|
| PVC/15Sb2O3① | 40 | 1 | 20 | 10.8 | 0 |
| PVC/13Sb2O3/2Al-MOF① | 40 | 1 | 20 | 9.36 | 1.44 |
| PVC/11.5Sb2O3/3.5Al-MOF① | 40 | 1 | 20 | 8.28 | 2.52 |
| PVC/10Sb2O3/5Al-MOF① | 40 | 1 | 20 | 7.2 | 3.6 |
| PVC/7.5Sb2O3/7.5Al-MOF① | 40 | 1 | 20 | 5.4 | 5.4 |
| PVC/5Sb2O3/10Al-MOF① | 40 | 1 | 20 | 3.6 | 7.2 |
表2 PVC复合材料的组成配比
| 样品 | PVC/g | Ba-Zn热稳定剂/g | DINP/g | Sb2O3/g | Al-MOF/g |
|---|---|---|---|---|---|
| PVC/15Sb2O3① | 40 | 1 | 20 | 10.8 | 0 |
| PVC/13Sb2O3/2Al-MOF① | 40 | 1 | 20 | 9.36 | 1.44 |
| PVC/11.5Sb2O3/3.5Al-MOF① | 40 | 1 | 20 | 8.28 | 2.52 |
| PVC/10Sb2O3/5Al-MOF① | 40 | 1 | 20 | 7.2 | 3.6 |
| PVC/7.5Sb2O3/7.5Al-MOF① | 40 | 1 | 20 | 5.4 | 5.4 |
| PVC/5Sb2O3/10Al-MOF① | 40 | 1 | 20 | 3.6 | 7.2 |
| 样品 | SBET/m2·g-1 | VP/cm3·g-1 | rH/nm |
|---|---|---|---|
| Li-MOF | 12.29 | 0.07 | 21.42 |
| Al-MOF | 1131.32 | 0.60 | 2.12 |
表3 MOF的比表面积和平均孔容、孔径
| 样品 | SBET/m2·g-1 | VP/cm3·g-1 | rH/nm |
|---|---|---|---|
| Li-MOF | 12.29 | 0.07 | 21.42 |
| Al-MOF | 1131.32 | 0.60 | 2.12 |
| 样品 | T5%/℃ | Tmax/℃ | W800/% |
|---|---|---|---|
| PLA | 340.0 | 366.7 | 1.09 |
| PLA/APP | 328.4 | 363.2 | 7.50 |
| PLA/APP/Li-MOF | 309.2 | 364.4 | 8.65 |
表4 纯PLA及复合材料的热重热重特征参数对比
| 样品 | T5%/℃ | Tmax/℃ | W800/% |
|---|---|---|---|
| PLA | 340.0 | 366.7 | 1.09 |
| PLA/APP | 328.4 | 363.2 | 7.50 |
| PLA/APP/Li-MOF | 309.2 | 364.4 | 8.65 |
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PLA | 20.3 | NR | 是 |
| PLA/15APP | 30.8 | V-2 | 是 |
| PLA/14.5APP/0.5Li-MOF | 31.5 | V-1 | 是 |
| PLA/14APP/1Li-MOF | 32.5 | V-1 | 是 |
| PLA/13.5APP/1.5Li-MOF | 34.2 | V-0 | 否 |
| PLA/13APP/2Li-MOF | 35.5 | V-0 | 否 |
| PLA/12.5APP/2.5Li-MOF | 38.2 | V-0 | 否 |
表5 纯PLA及复合材料的LOI和UL-94参数对比
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PLA | 20.3 | NR | 是 |
| PLA/15APP | 30.8 | V-2 | 是 |
| PLA/14.5APP/0.5Li-MOF | 31.5 | V-1 | 是 |
| PLA/14APP/1Li-MOF | 32.5 | V-1 | 是 |
| PLA/13.5APP/1.5Li-MOF | 34.2 | V-0 | 否 |
| PLA/13APP/2Li-MOF | 35.5 | V-0 | 否 |
| PLA/12.5APP/2.5Li-MOF | 38.2 | V-0 | 否 |
| 样品 | TTI/s | THR/MJ·m-2 | PHRR/kW·m-2 |
|---|---|---|---|
| PLA | 71 | 61.2 | 358.2 |
| PLA/APP | 59 | 42.0 | 266.0 |
| PLA/APP/Li-MOF | 61 | 48.7 | 313.3 |
表6 纯PLA及复合材料的CCT参数对比
| 样品 | TTI/s | THR/MJ·m-2 | PHRR/kW·m-2 |
|---|---|---|---|
| PLA | 71 | 61.2 | 358.2 |
| PLA/APP | 59 | 42.0 | 266.0 |
| PLA/APP/Li-MOF | 61 | 48.7 | 313.3 |
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率/% |
|---|---|---|---|
| PLA | 41.33±2.16 | 421.87±12.65 | 8.38±1.23 |
| PLA/15APP | 36.03±2.86 | 360.43±13.77 | 11.04±1.82 |
| PLA/14.5APP/0.5Li-MOF | 35.05±2.03 | 235.72±30.39 | 10.48±1.30 |
| PLA/14APP/1Li-MOF | 24.78±1.15 | 219.37±25.61 | 8.56±1.39 |
| PLA/13.5APP/1.5Li-MOF | 14.01±1.69 | 327.17±11.74 | 5.07±0.88 |
| PLA/13APP/2Li-MOF | 11.04±1.37 | 276.27±23.87 | 4.66±0.74 |
| PLA/12.5APP/2.5Li-MOF | 9.41±2.28 | 262.49±26.65 | 3.25±0.78 |
表7 纯PLA及复合材料的力学性能参数对比
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率/% |
|---|---|---|---|
| PLA | 41.33±2.16 | 421.87±12.65 | 8.38±1.23 |
| PLA/15APP | 36.03±2.86 | 360.43±13.77 | 11.04±1.82 |
| PLA/14.5APP/0.5Li-MOF | 35.05±2.03 | 235.72±30.39 | 10.48±1.30 |
| PLA/14APP/1Li-MOF | 24.78±1.15 | 219.37±25.61 | 8.56±1.39 |
| PLA/13.5APP/1.5Li-MOF | 14.01±1.69 | 327.17±11.74 | 5.07±0.88 |
| PLA/13APP/2Li-MOF | 11.04±1.37 | 276.27±23.87 | 4.66±0.74 |
| PLA/12.5APP/2.5Li-MOF | 9.41±2.28 | 262.49±26.65 | 3.25±0.78 |
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PVC/15Sb2O3 | 28.5 | V-0 | 否 |
| PVC/13Sb2O3/2Al-MOF | 30.5 | V-0 | 否 |
| PVC/11.5Sb2O3/3.5Al-MOF | 29.5 | V-0 | 否 |
| PVC/10Sb2O3/5Al-MOF | 32.5 | V-0 | 否 |
| PVC/7.5Sb2O3/7.5Al-MOF | 32.2 | V-0 | 否 |
| PVC/5Sb2O3/10Al-MOF | 31.8 | V-0 | 否 |
表8 PVC复合材料的LOI和UL-94参数对比
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PVC/15Sb2O3 | 28.5 | V-0 | 否 |
| PVC/13Sb2O3/2Al-MOF | 30.5 | V-0 | 否 |
| PVC/11.5Sb2O3/3.5Al-MOF | 29.5 | V-0 | 否 |
| PVC/10Sb2O3/5Al-MOF | 32.5 | V-0 | 否 |
| PVC/7.5Sb2O3/7.5Al-MOF | 32.2 | V-0 | 否 |
| PVC/5Sb2O3/10Al-MOF | 31.8 | V-0 | 否 |
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率 /% |
|---|---|---|---|
| PVC/15Sb2O3 | 10.34±0.69 | 3.52±0.17 | 288.01±28.26 |
| PVC/13Sb2O3/2Al-MOF | 12.05±0.57 | 7.38±1.62 | 232.47±33.21 |
| PVC/11.5Sb2O3/3.5Al-MOF | 11.48±1.45 | 7.35±1.83 | 266.53±38.86 |
| PVC/10Sb2O3/5Al-MOF | 12.42±0.61 | 9.38±0.11 | 215.84±34.38 |
| PVC/7.5Sb2O3/7.5Al-MOF | 11.34±0.55 | 7.47±1.72 | 134.92±16.03 |
| PVC/5Sb2O3/10Al-MOF | 12.05±0.42 | 10.69±0.87 | 131.18±21.65 |
表9 PVC复合材料的力学性能参数对比
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率 /% |
|---|---|---|---|
| PVC/15Sb2O3 | 10.34±0.69 | 3.52±0.17 | 288.01±28.26 |
| PVC/13Sb2O3/2Al-MOF | 12.05±0.57 | 7.38±1.62 | 232.47±33.21 |
| PVC/11.5Sb2O3/3.5Al-MOF | 11.48±1.45 | 7.35±1.83 | 266.53±38.86 |
| PVC/10Sb2O3/5Al-MOF | 12.42±0.61 | 9.38±0.11 | 215.84±34.38 |
| PVC/7.5Sb2O3/7.5Al-MOF | 11.34±0.55 | 7.47±1.72 | 134.92±16.03 |
| PVC/5Sb2O3/10Al-MOF | 12.05±0.42 | 10.69±0.87 | 131.18±21.65 |
| 1 | DE VOS Lobke, VAN DE VOORDE Babs, VAN DAELE Lenny, et al. Poly(alkylene terephthalate)s: From current developments in synthetic strategies towards applications[J]. European Polymer Journal, 2021, 161: 110840. |
| 2 | MUDONDO Joyce, LEE Hoe-Suk, JEONG Yunhee, et al. Recent advances in the chemobiological upcycling of polyethylene terephthalate (PET) into value-added chemicals[J]. Journal of Microbiology and Biotechnology, 2023, 33(1): 1-14. |
| 3 | EL-SAYED El-Sayed M, YUAN Daqiang. Waste to MOFs: Sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications[J]. Green Chemistry, 2020, 22(13): 4082-4104. |
| 4 | 李志斌, 唐辉, 罗大伟, 等. 废弃PET化学回收及制备不饱和聚酯树脂的研究进展[J]. 化工进展, 2022, 41(6): 3279-3292. |
| LI Zhibin, TANG Hui, LUO Dawei, et al. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resins[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3279-3292. | |
| 5 | MA Dou, HUANG Xin, ZHANG Yu, et al. Metal-organic frameworks: Synthetic methods for industrial production[J]. Nano Research, 2023, 16(5): 7906-7925. |
| 6 | CUI Wengang, ZHANG Guoying, HU Tongliang, et al. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4 [J]. Coordination Chemistry Reviews, 2019, 387: 79-120. |
| 7 | YANG Qihao, XU Qiang, JIANG Hailong. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. |
| 8 | SILVA Patrícia, VILELA Sérgio M F, TOMÉ João P C, et al. Multifunctional metal-organic frameworks: From academia to industrial applications[J]. Chemical Society Reviews, 2015, 44(19): 6774-6803. |
| 9 | LI Ting, MA Shuai, YANG Hu, et al. Preparation of carbonized MOF/MgCl2 hybrid products as dye adsorbent and supercapacitor: Morphology evolution and Mg salt effect[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1601-1612. |
| 10 | DELEU Willem P R, STASSEN Ivo, JONCKHEERE Dries, et al. Waste PET (bottles) as a resource or substrate for MOF synthesis[J]. Journal of Materials Chemistry A, 2016, 4(24): 9519-9525. |
| 11 | Sheng-Han LO, SENTHIL RAJA Duraisamy, CHEN Chia-Wei, et al. Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr)[J]. Dalton Transactions, 2016, 45(23): 9565-9573. |
| 12 | WARIBAM Preeti, RAJEENDRE KATUGAMPALAGE Thilina, OPAPRAKASIT Pakorn, et al. Upcycling plastic waste: Rapid aqueous depolymerization of PET and simultaneous growth of highly defective UiO-66 metal-organic framework with enhanced CO2 capture via one-pot synthesis[J]. Chemical Engineering Journal, 2023, 473: 145349. |
| 13 | ZHOU Lin, WANG Sujing, CHEN Yunlin, et al. Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source[J]. Microporous and Mesoporous Materials, 2019, 290: 109674. |
| 14 | JUNG Kyung-Won, KIM Jun-Ho, CHOI Jae-Woo. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride[J]. Composites B: Engineering, 2020, 187: 107867. |
| 15 | SONG Kainan, QIU Xiaoqing, HAN Bin, et al. Efficient upcycling electroplating sludge and waste PET into Ni-MOF nanocrystals for the effective photoreduction of CO2 [J]. Environmental Science: Nano, 2021, 8(2): 390-398. |
| 16 | DOAN Van Dat, Thi Long DO, Thi Mong Thu HO, et al. Utilization of waste plastic pet bottles to prepare copper-1,4-benzenedicarboxylate metal-organic framework for methylene blue removal[J]. Separation Science and Technology, 2020, 55(3): 444-455. |
| 17 | ZHANG Feng, CHEN Shuyi, NIE Shengqiang, et al. Waste PET as a reactant for lanthanide MOF synthesis and application in sensing of picric acid[J]. Polymers, 2019, 11(12): 2015. |
| 18 | GHOSH Arnab, Gopal DAS. Facile synthesis of Sn(Ⅱ)-MOF using waste PET bottles as an organic precursor and its derivative SnO2 NPs: Role of surface charge reversal in adsorption of toxic ions[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105288. |
| 19 | MA Shicong, HOU Yanbei, XIAO Yuling, et al. Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin[J]. Materials Chemistry and Physics, 2020, 247: 122875. |
| 20 | ZHAN Yuanyuan, SHANG Sheng, YUAN Bihe, et al. Carbonization mechanism of polypropylene catalyzed by Co compounds combined with phosphorus-doped graphene to improve its fire safety performance[J]. Materials Today Communications, 2021, 26: 101792. |
| 21 | HOU Yanbei, HU Weizhao, GUI Zhou, et al. Preparation of metal–organic frameworks and their application as flame retardants for polystyrene[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2036-2045. |
| 22 | Ting SAI, RAN Shiya, GUO Zhenghong, et al. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate[J]. Composites Part B: Engineering, 2019, 176: 107198. |
| 23 | JIANG Hongrui, ZHAO Shiqiang, MA Xiaoli, et al. A fast π-π stacking self-assembly of cobalt terephthalate dihydrate and the twelve-electron lithiation-delithiation of anhydrous cobalt terephthalate[J]. Journal of Power Sources, 2019, 426: 23-32. |
| 24 | PANDA Debashis, PATRA Soumyadip, AWASTHI Mahendra Kumar, et al. Lab cooked MOF for CO2 capture: A sustainable solution to waste management[J]. Journal of Chemical Education, 2020, 97(4): 1101-1108. |
| 25 | AHADI Niusha, ASKARI Sima, FOULADITAJAR Amir, et al. Facile synthesis of hierarchically structured MIL-53(Al) with superior properties using an environmentally-friendly ultrasonic method for separating lead ions from aqueous solutions[J]. Scientific Reports, 2022, 12(1): 2649. |
| 26 | MOLINARO Stefano, CRUZ ROMERO Malco, BOARO Marta, et al. Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films[J]. Journal of Food Engineering, 2013, 117(1): 113-123. |
| 27 | XIAO Lin, Yiyong MAI, HE Feng, et al. Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose[J]. Journal of Materials Chemistry, 2012, 22(31): 15732-15739. |
| 28 | YU Jinhong, HUANG Xingyi, WU Chao, et al. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J]. Polymer, 2012, 53(2): 471-480. |
| 29 | CHU Tao, LU Yixia, HOU Boyou, et al. The application of ammonium polyphosphate in unsaturated polyester resins: A mini review[J]. Polymer Degradation and Stability, 2024, 225: 110796. |
| 30 | SONG Kunpeng, ZHANG Henglai, PAN Yetang, et al. Metal-organic framework-derived bird’s nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites[J]. Journal of Colloid and Interface Science, 2023, 643: 489-501. |
| 31 | XU Jianzhong, ZHANG Chunyan, QU Hongqiang, et al. Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 2005, 98(3): 1469-1475. |
| [1] | 单雪影, 李玲玉, 张濛, 张家傅, 李锦春. 阻燃环氧树脂/低分子聚苯醚材料的制备及性能[J]. 化工进展, 2025, 44(3): 1533-1541. |
| [2] | 耿乾浩, 徐晓云, 李冰晶. 矿用聚氨酯注浆材料反应热控制技术研究进展[J]. 化工进展, 2025, 44(1): 319-328. |
| [3] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
| [4] | 楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156. |
| [5] | 黄鸿, 欧阳浩民, 杨依静, 李昌霖, 陈烁娜. 硫化零价铁-微生物复合吸附剂对磷酸三(2-氯乙基)酯的吸附-降解机制[J]. 化工进展, 2024, 43(8): 4704-4713. |
| [6] | 金彬浩, 朱小倩, 柯天, 张治国, 鲍宗必, 任其龙, 苏宝根, 杨启炜. 芳香烃/环烷烃吸附分离材料研究进展[J]. 化工进展, 2024, 43(4): 1863-1881. |
| [7] | 全翠, 陈常祥, 高宁博, 陆丽芳. 表面活性剂及聚乳酸塑料对餐厨垃圾发酵产酸特性影响[J]. 化工进展, 2024, 43(10): 5791-5804. |
| [8] | 李珍明, 李春祺, 李征光, 李秀敏, 赵俭波. 棉纺黑液提取物基聚氨酯泡沫的制备及性能[J]. 化工进展, 2024, 43(10): 5704-5711. |
| [9] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
| [10] | 顾海洋, 王冬, 宗永忠, 付少海. 制革污泥蛋白质基生物质棉织物阻燃涂层的制备与阻燃性能[J]. 化工进展, 2023, 42(2): 641-649. |
| [11] | 许春树, 姚庆达, 梁永贤, 周华龙. 金属-有机框架材料的调控策略及其对典型重金属离子的吸附性能[J]. 化工进展, 2023, 42(12): 6518-6534. |
| [12] | 许春树, 姚庆达, 梁永贤, 周华龙. 金属-有机框架材料结构设计及其对合成染料的吸附性能[J]. 化工进展, 2023, 42(10): 5322-5338. |
| [13] | 申红艳, 刘有智, 朱海林, 赵凌波. 硅藻土基表面有机化氢氧化镁的制备及性能[J]. 化工进展, 2022, 41(2): 848-853. |
| [14] | 李婷, 杜少辉, 崔锦峰, 王仰辉, 李虎林, 郭润兰, 王蓬, 王振军, 郭军红, 杨保平. 磷-硼杂化预聚物嵌段水性聚氨酯纸张施胶剂的制备和性能[J]. 化工进展, 2022, 41(10): 5549-5557. |
| [15] | 刘荣涛, 张诗洋, 黄兴文, 朋小康, 闵永刚. 聚苯胺/聚乳酸复合纳米纤维表面形貌对生物相容性的影响[J]. 化工进展, 2021, 40(8): 4406-4412. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |