| [1] |
ZHOU Haibo, LIU Su, SU Junjie, et al. Light olefin synthesis from syngas over sulfide-zeolite composite catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 6815-6820.
|
| [2] |
TORRES GALVIS Hirsa M, DE JONG Krijn P, et al. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149.
|
| [3] |
YU Fei, LI Zhengjia, AN Yunlei, et al. Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 801-814.
|
| [4] |
ZHAI Peng, XU Cong, GAO Rui, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55: 9902-9907.
|
| [5] |
JIANG Feng, LIU Bing, LI Wenping, et al. Two-dimensional graphene-directed formation of the cylindrical iron carbide nanocapsules for Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2017, 7(20): 4609-4621.
|
| [6] |
TORRES GALVIS Hirsa M, KOEKEN Ard C J, BITTER Johannes H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis, 2013, 303: 22-30.
|
| [7] |
CAI Jian, JIANG Feng, LIU Xiaohao, et al. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process[J]. Applied Catalysis B: Environment and Energy, 2017, 210: 1-13.
|
| [8] |
ZHAO Zi’ang, LU Wei, YANG Ruo’ou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2018, 8(1): 228-241.
|
| [9] |
TORRES GALVIS Hirsa M, BITTER Johannes H, KHARE Chaitanya B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335: 835-838.
|
| [10] |
ZHONG Liangshu, YU Fei, AN Yunlei, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538: 84-87.
|
| [11] |
LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314.
|
| [12] |
ZHAO Guolong, LIU Cun, XING Xuexiang, et al. Latest progress in one-step conversion from syngas to light olefins[J]. Modern Chemical Industry, 2019, 39(2): 55-60.
|
| [13] |
RAVEENDRA G, LI Congming, LIU Bin, et al. Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: Role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catalysis Science & Technology, 2018, 8(14): 3527-3538.
|
| [14] |
MENG Fanhui, LI Xiaojing, ZHANG Peng, et al. Highly active ternary oxide ZrCeZnO x combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catalysis Today, 2021, 368: 118-125.
|
| [15] |
PAN Xiulian, JIAO Feng, MIAO Dengyun, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609.
|
| [16] |
JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351: 1065-1068.
|
| [17] |
JIAO Feng, BAI Bing, LI Gen, et al. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins[J]. Science, 2023, 380: 727-730.
|
| [18] |
ZHU Yifeng, PAN Xiulian, JIAO Feng, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7(4): 2800-2804.
|
| [19] |
CHENG Kang, GU Bang, LIU Xiaoliang, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 128(15): 4803-4806.
|
| [20] |
LIU Xiaoliang, ZHOU Wei, YANG Yudan, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718.
|
| [21] |
SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communication, 2019, 10(1): 1-8.
|
| [22] |
WANG Sen, WANG Pengfei, SHI Dezhi, et al. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catalysis, 2020, 10: 2046-2059.
|
| [23] |
NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2018, 9(2): 1026-1032.
|
| [24] |
ZHANG Peng, MENG Fanhui, LI Xiaojing, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catalysis Science & Technology, 2019, 9(20): 5577-5581.
|
| [25] |
SU Junjie, WANG Dong, WANG Yangdong, et al. Direct conversion of syngas into light olefins over zirconium-doped indium (Ⅲ) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10(7): 1536-1541.
|
| [26] |
LI Jifan, ZHANG Chenghua, CHENG Xiaofan, et al. Effects of alkaline-earth metals on the structure, adsorption and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Applied Catalysis A: General, 2013, 464(16): 10-19.
|
| [27] |
OREGE Joshua Iseoluwa, WEI Jian, HAN Yu, et al. Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO2 hydrogenation[J]. Applied Catalysis B: Environment and Energy, 2022, 316: 121640.
|
| [28] |
WANG Mengheng, WANG Ziwei, LIU Suhan, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Journal of Catalysis, 2021, 394: 181-192.
|
| [29] |
XING Aihua, YUAN Delin, TIAN Dayong, et al. Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction[J]. Microporous and Mesoporous Materials, 2019, 288: 109562.
|
| [30] |
Jie TUO, LI Shiqing, XU Hao, et al. A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 1-18.
|
| [31] |
DANG Shanshan, GAO Peng, LIU Ziyu, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364: 382-393.
|
| [32] |
LIU Tangkang, XU Di, SONG Mengyang, et al. K-ZrO2 interfaces boost CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2023, 13: 4667-4674.
|
| [33] |
WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3e701290.
|
| [34] |
WANG Ting, XU Yuebing, LI Yufeng, et al. Sodium-mediated bimetallic Fe-Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite[J]. ACS Catalysis, 2021, 11(6): 3553-3574.
|
| [35] |
YU Hailing, WANG Caiqi, LIN Tiejun, et al. Direct production of olefins from syngas with ultrahigh carbon efficiency[J]. Nature Communication, 2022, 13: 5987.
|