| [1] |
LIU Rong, WANG Xiaolong, GAO Shiwang. CO2 capture and mineralization using carbide slag doped fly ash[J]. Greenhouse Gases: Science and Technology, 2020, 10(1): 103-115.
|
| [2] |
NAZIR Muhammad Shahzad, Ziad M ALI, BILAL Muhammad, et al.Environmental impacts and risk factors of renewable energy paradigm—A review[J]. Environmental Science and Pollution Research International, 2020, 27(27): 33516-33526.
|
| [3] |
RUSMAN N A A, DAHARI M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12108-12126.
|
| [4] |
RANJEKAR Apoorva M, YADAV Ganapati D. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 89-113.
|
| [5] |
SIKARWAR Vineet Singh, PFEIFER Christoph, RONSSE Frederik, et al. Progress in in-situ CO2-sorption for enhanced hydrogen production[J]. Progress in Energy and Combustion Science, 2022, 91: 101008.
|
| [6] |
HANTOKO Dwi, KHAN Wasim Ullah, OSMAN Ahmed I, et al. Carbon-neutral hydrogen production by catalytic methane decomposition: A review[J]. Environmental Chemistry Letters, 2024, 22(4): 1623-1663.
|
| [7] |
XIAO Junwu, OLIVEIRA Alexandra M, WANG Lan, et al. Water-fed hydroxide exchange membrane electrolyzer enabled by a fluoride-incorporated nickel-iron oxyhydroxide oxygen evolution electrode[J]. ACS Catalysis, 2021, 11(1): 264-270.
|
| [8] |
LI Xiao, ZHAO Lili, YU Jiayuan, et al. Water splitting: From electrode to green energy system[J]. Nano-Micro Letters, 2020, 12(1): 131.
|
| [9] |
曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
|
|
CAO Junwen, ZHANG Wenqiang, LI Yifeng, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
|
| [10] |
BARELLI L, BIDINI G, GALLORINI F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review[J]. Energy, 2008, 33(4): 554-570.
|
| [11] |
ZHANG Junyu, DANG Jian, ZHU Xiaohong, et al. Ultra-low Pt-loaded catalyst based on nickel mesh for boosting alkaline water electrolysis[J]. Applied Catalysis B: Environmental, 2023, 325: 122296.
|
| [12] |
GALANI Sunil M, MONDAL Aniruddha, SRIVASTAVA Divesh N, et al. Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(37): 18635-18644.
|
| [13] |
ZHAO Yang, WANG Zhen, GUAN Shuyun, et al. Atomically dispersed Ir Lewis acid sites on (111)-oriented CeO2 enable enhanced reaction kinetics for Li-ϕ2 batteries[J]. Chemical Engineering Journal, 2024, 500: 156972.
|
| [14] |
JARAMILLO Thomas F, JØRGENSEN Kristina P, BONDE Jacob, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
|
| [15] |
YU Huidi, HUI Lan, XUE Yurui, et al. 2D graphdiyne loading ruthenium atoms for high efficiency water splitting[J]. Nano Energy, 2020, 72: 104667.
|
| [16] |
WEN Yunzhou, CHEN Peining, WANG Lu, et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation[J]. Journal of the American Chemical Society, 2021, 143(17): 6482-6490.
|
| [17] |
WANG Huimin, LI Xinyi, ZHANG Guozhu, et al. Recent progress in balancing the activity, durability, and low Ir content for Ir-based oxygen evolution reaction electrocatalysts in acidic media[J]. Small, 2025, 21(6): e2410407.
|
| [18] |
LI Yaguang, WANG Yi, LU Jianmin, et al. 2D intrinsically defective RuO2/graphene heterostructures as all-pH efficient oxygen evolving electrocatalysts with unprecedented activity[J]. Nano Energy, 2020, 78: 105185.
|
| [19] |
ZAGALSKAYA Alexandra, ALEXANDROV Vitaly. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2 [J]. ACS Catalysis, 2020, 10(6): 3650-3657.
|
| [20] |
LI Meixuan, WANG Huiyuan, ZHU Wendong, et al. RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting[J]. Advanced Science, 2019, 7(2): 1901833.
|
| [21] |
CAO Linlin, LUO Qiquan, CHEN Jiajia, et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nature Communications, 2019, 10(1): 4849.
|
| [22] |
GAO Taotao, LI Xiaoqin, CHEN Xiaojuan, et al. Ultra-fast preparing carbon nanotube-supported trimetallic Ni, Ru, Fe heterostructures as robust bifunctional electrocatalysts for overall water splitting[J]. Chemical Engineering Journal, 2021, 424: 130416.
|
| [23] |
LI Lei, LI Guilin, ZHANG Yaping, et al. Fabricating nano-IrO2@amorphous Ir-MOF composites for efficient overall water splitting: A one-pot solvothermal approach[J]. Journal of Materials Chemistry A, 2020, 8(48): 25687-25695.
|
| [24] |
BANKAR Balasaheb D, RAVI Krishnan, TAYADE Rajesh J, et al. Iridium supported on spinal cubic cobalt oxide catalyst for the selective hydrogenation of CO2 to formic acid[J]. Journal of CO2 Utilization, 2023, 67: 102315.
|
| [25] |
RAVICHANDRAN Sabarinathan, BHUVANENDRAN Narayanamoorthy, XU Qian, et al. Improved methanol electrooxidation catalyzed by ordered mesoporous Pt-Ru-Ir alloy nanostructures with trace Ir content[J]. Electrochimica Acta, 2021, 394: 139148.
|
| [26] |
ZHANG Qiaoqiao, DUAN Zhiyao, WANG Yin, et al. Atomically dispersed iridium catalysts for multifunctional electrocatalysis[J]. Journal of Materials Chemistry A, 2020, 8(37): 19665-19673.
|
| [27] |
ALKAN Baris, BRAUN Michael, LANDROT Gautier, et al. Spray-flame-synthesized Sr- and Fe-substituted LaCoO3 perovskite nanoparticles with enhanced OER activities[J]. Journal of Materials Science, 2022, 57(40): 18923-18936.
|
| [28] |
LI Shufang, ZHENG Jie, HU Liang, et al. Sr-doped double perovskite La2CoMnO6 to promote the oxygen evolution reaction activity[J]. ChemElectroChem, 2022, 9(15): e202200475.
|
| [29] |
LIU Zhongliang, LIU Heng, XUE Tianrui, et al. Synergistic Sr activation and Cr buffering effect on RuO2 electronic structures for enhancing the acidic oxygen evolution reaction[J]. Nano Letters, 2024, 24(35): 10899-10907.
|
| [30] |
YIN Fengjun, FANG Ling, LIU Hong. pH overpotential for unveiling the pH gradient effect of H+/OH–Transport in electrode reaction kinetics[J]. CCS Chemistry, 2022, 4(1): 369-380.
|
| [31] |
YIN Fengjun, YANG Xiaohui, ZHENG Lei, et al. Acid-base transport model depicting the dynamic pH response of interfacial reactions[J]. AIChE Journal, 2022, 68(6): e17669.
|