| [1] |
杨朝合, 陈小博, 李春义, 等. 催化裂化技术面临的挑战与机遇[J]. 中国石油大学学报(自然科学版), 2017, 41(6): 171-177.
|
|
YANG Chaohe, CHEN Xiaobo, LI Chunyi, et al. Challenges and opportunities of fluid catalytic cracking technology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 171-177.
|
| [2] |
王博, 段爱军, 陈振涛, 等. 重质油在催化剂孔道内受限扩散及其关联模型研究进展[J]. 工业催化, 2017, 25(9): 1-9.
|
|
WANG Bo, DUAN Aijun, CHEN Zhentao, et al. Research progress in restrictive diffusion and its empirical correlation of heavy oil in catalyst pore channels[J]. Industrial Catalysis, 2017, 25(9): 1-9.
|
| [3] |
CHEN Wenzhe, HAN Dongmin, SUN Xiaohui, et al. Studies on the preliminary cracking of heavy oils: Contributions of various factors[J]. Fuel, 2013, 106: 498-504.
|
| [4] |
OTTERSTEDT J E, ZHU Yanming, STERTE J. Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices[J]. Applied Catalysis, 1988, 38(1): 143-155.
|
| [5] |
WANG Bin, LI Nan, ZHANG Qiang, et al. Studies on the preliminary cracking: The reasons why matrix catalytic function is indispensable for the catalytic cracking of feed with large molecular size[J]. Journal of Energy Chemistry, 2016, 25(4): 641-653.
|
| [6] |
MIZUNO Takaki, YAMAZAKI Hiroshi, TAKAMIYA Yusuke, et al. Effects of the FCC catalyst binder type on propylene production during catalytic cracking of VGO[J]. Applied Catalysis A: General, 2023, 661: 119214.
|
| [7] |
于善青, 代振宇, 田辉平, 等. 采用密度泛函理论研究金属离子改性Y型分子筛的酸性[J]. 石油学报(石油加工), 2011, 27(6): 839-844.
|
|
YU Shanqing, DAI Zhenyu, TIAN Huiping, et al. Study on the acidity of metal cation modified y zeolites by density functional theory[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(6): 839-844.
|
| [8] |
GUO Shuo, YU Shanqing, TIAN Huiping, et al. Mechanistic insights into the interaction between binders and Y-type zeolites in fluid catalytic cracking[J]. Fuel, 2022, 324: 124640.
|
| [9] |
张春光, 邵嘉欣, 王延飞, 等. 合成方法对拟薄水铝石孔结构的影响[J]. 工业催化, 2022, 30(11): 63-69.
|
|
ZHANG Chunguang, SHAO Jiaxin, WANG Yanfei, et al. Effect of synthesis method on pore structure of pseudo boehmite[J]. Industrial Catalysis, 2022, 30(11): 63-69.
|
| [10] |
ZHENG Yongsheng, SONG Jiaqing, XU Xiangyu, et al. Peptization mechanism of boehmite and its effect on the preparation of a fluid catalytic cracking catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(24): 10029-10034.
|
| [11] |
王楚, 冯辉霞, 梁顺琴, 等. Al2(SO4)3-NH3·H2O法大孔拟薄水铝石的制备及其应用[J]. 工业催化, 2015, 23(7): 541-544.
|
|
WANG Chu, FENG Huixia, LIANG Shunqin, et al. Preparation of macropore pseudo-poehmite by Al2(SO4)3-NH3·H2O process and its application[J]. Industrial Catalysis, 2015, 23(7): 541-544.
|
| [12] |
符荣, 闫伟鹏, 王亚楠, 等. 硼掺杂方式对活性氧化铝性质与结构的影响[J]. 石油化工, 2018, 47(4): 315-319.
|
|
FU Rong, YAN Weipeng, WANG Yanan, et al. Influence of boron doping methods on properties and structure of activated alumina[J]. Petrochemical Technology, 2018, 47(4): 315-319.
|
| [13] |
FENG Rui, LIU Songtao, BAI Peng, et al. Preparation and characterization of γ-Al2O3 with rich brønsted acid sites and its application in the fluid catalytic cracking process[J]. The Journal of Physical Chemistry C, 2014, 118(12): 6226-6234.
|
| [14] |
陈兰菊, 郭绍辉, 赵地顺. 催化裂化汽油中特征硫化物噻吩的催化氧化脱硫[J]. 化工学报, 2007, 58(3): 652-655.
|
|
CHEN Lanju, GUO Shaohui, ZHAO Dishun. Oxidative desulfurization of thiophene in fluid catalytic cracking gasoline[J]. CIESC Journal, 2007, 58(3): 652-655.
|
| [15] |
LIU Zhangli, XU Jiaxing, XU Min, et al. Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate[J]. Nature Communications, 2022, 13(1): 193.
|
| [16] |
胡林谢. 加氢催化剂孔内扩散性能表征新方法及其应用研究[D]. 北京: 中国石油大学(北京), 2021.
|
|
HU Linxie. A new method for diffusion characterization of hydrotreating catalysts and its application[D]. Beijing: China University of Petroleum (Beijing), 2021.
|
| [17] |
CHOI Yunji, KIM Gunjoo, KIM Jinwoong, et al. Anchoring catalytically active species on alumina via surface hydroxyl group for durable surface reaction[J]. Applied Catalysis B: Environmental, 2023, 325: 122325.
|
| [18] |
CAVALCANTE Célio L, SILVA Neuma M, SOUZA-AGUIAR Eduardo F, et al. Diffusion of paraffins in dealuminated Y mesoporous molecular sieve[J]. Adsorption, 2003, 9(3): 205-212.
|
| [19] |
Duong D DO. Adsorption analysis: Equilibria and kinetics[M]. London: Imperial College Press, 1998.
|
| [20] |
DENG Hua, YI Honghong, TANG Xiaolong, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites[J]. Chemical Engineering Journal, 2012, 188: 77-85.
|
| [21] |
Mladen EIC, RUTHVEN Douglas M. A new experimental technique for measurement of intracrystalline diffusivity[J]. Zeolites, 1988, 8(1): 40-45.
|
| [22] |
HAN Minghan, YIN Xiuyan, JIN Yong, et al. Diffusion of aromatic hydrocarbon in ZSM-5 studied by the improved zero length column method[J]. Industrial & Engineering Chemistry Research, 1999, 38(8): 3172-3175.
|
| [23] |
CANET Xavier, NOKERMAN Joëlle, Marc FRÈRE. Determination of the henry constant for zeolite-VOC systems using massic and chromatographic adsorption data[J]. Adsorption, 2005, 11(1): 213-216.
|
| [24] |
QI Jian, JIN Quan, ZHAO Kun, et al. Catalytic cracking of 1,3,5-triisopropylbenzene over silicoaluminophosphate with hierarchical pore structure[J]. Journal of Porous Materials, 2015, 22(4): 1021-1032.
|