化工进展 ›› 2025, Vol. 44 ›› Issue (12): 6840-6851.DOI: 10.16085/j.issn.1000-6613.2024-1975
• 能源加工与技术 • 上一篇
杜丽敏1(
), 年军1(
), 朱竟驰1, 于鸿飞1, 程月2
收稿日期:2024-12-03
修回日期:2025-01-09
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
年军
作者简介:杜丽敏(1998—),女,硕士研究生,研究方向为粉尘灾害治理与防治。E-mail: 2470417542@qq.com。
基金资助:
DU Limin1(
), NIAN Jun1(
), ZHU Jingchi1, YU Hongfei1, CHENG Yue2
Received:2024-12-03
Revised:2025-01-09
Online:2025-12-25
Published:2026-01-06
Contact:
NIAN Jun
摘要:
在水中添加润湿剂是提高煤层注水润湿效果的有效方法。以不同变质程度煤样为研究对象,采用宏观实验、介观实验以及微观分子动力学模拟相结合的方法,探讨复合表面活性剂对不同煤种润湿性的影响。首先,利用表面张力和接触角实验从宏观角度评估不同复配比例表面活性剂对三种煤样润湿性的作用,确定最佳复配方法。结果表明,月桂醇聚醚硫酸酯钠(SLES)与脂肪醇聚氧乙烯醚(AEO-9)以质量比为3∶2复配时润湿效果最佳。其次,利用扫描电子显微镜、傅里叶变换红外光谱等介观实验进一步研究复合表面活性剂对不同煤样的润湿性和吸附能力。结果表明,复合溶液处理后,煤表面会形成团聚的大块煤颗粒,煤颗粒间的裂缝有利于水溶液渗透润湿煤层。同时,煤分子中疏水基团总含量显著降低,亲水性官能团的含量明显增加,煤颗粒之间聚集能力增强,有利于粉尘沉降。最后,从微观分子模拟的角度分析了复合表面活性剂对不同体系的润湿协同机理。结果表明,复合表面活性剂分子能很好地吸附在煤分子表面,促进大量水分子向煤表面移动,提高煤与水界面的作用能,增强煤表面水分子层的厚度,增加水分子的扩散系数。研究结果对改善煤的润湿性具有重要意义。
中图分类号:
杜丽敏, 年军, 朱竟驰, 于鸿飞, 程月. 不同煤种注水润湿剂优选及微观机理[J]. 化工进展, 2025, 44(12): 6840-6851.
DU Limin, NIAN Jun, ZHU Jingchi, YU Hongfei, CHENG Yue. Optimization of water injection wetting agents for different coal types and micromechanical studies[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6840-6851.
| 煤样 | 工业分析(质量分数)/% | |||
|---|---|---|---|---|
| 水分(Mad) | 灰分(Aad) | 挥发分(Vad) | 固定碳(FCad) | |
| 褐煤 | 10.39 | 4.33 | 37.91 | 47.37 |
| 烟煤 | 1.81 | 9.54 | 24.47 | 68.45 |
| 无烟煤 | 0.65 | 7.63 | 9.62 | 82.10 |
表1 煤样基本参数
| 煤样 | 工业分析(质量分数)/% | |||
|---|---|---|---|---|
| 水分(Mad) | 灰分(Aad) | 挥发分(Vad) | 固定碳(FCad) | |
| 褐煤 | 10.39 | 4.33 | 37.91 | 47.37 |
| 烟煤 | 1.81 | 9.54 | 24.47 | 68.45 |
| 无烟煤 | 0.65 | 7.63 | 9.62 | 82.10 |
| 类型 | 表面活性剂 | 代号 | 分子式 | CAS编号 |
|---|---|---|---|---|
| 阴离子型 | 月桂醇聚醚硫酸酯钠 | SLES | C14H29NaO5S | 68585-34-2 |
| 非离子型 | 脂肪醇聚氧乙烯醚 | AEO-9 | C30H62O10 | 68213-23-0 |
| 两性离子型 | 月桂酰两性基双醋酸钠 | LAD-35 | C20H39N2NaO6 | 14350-97-1 |
表2 表面活性剂选择
| 类型 | 表面活性剂 | 代号 | 分子式 | CAS编号 |
|---|---|---|---|---|
| 阴离子型 | 月桂醇聚醚硫酸酯钠 | SLES | C14H29NaO5S | 68585-34-2 |
| 非离子型 | 脂肪醇聚氧乙烯醚 | AEO-9 | C30H62O10 | 68213-23-0 |
| 两性离子型 | 月桂酰两性基双醋酸钠 | LAD-35 | C20H39N2NaO6 | 14350-97-1 |
| 系统 | A2924cm-1 | A2954cm-1 | A2924cm-1/A2954cm-1 |
|---|---|---|---|
| 无烟煤原煤 | 0.26 | 0.19 | 1.37 |
| 无烟煤/R1复合溶液 | 0.56 | 0.21 | 2.67 |
| 烟煤原煤 | 0.84 | 0.30 | 2.80 |
| 烟煤/R1复合溶液 | 0.82 | 0.24 | 3.42 |
| 褐煤原煤 | 0.49 | 0.15 | 3.27 |
| 褐煤/R1复合溶液 | 1.72 | 0.32 | 5.38 |
表3 不同系统A2924cm-1/A2954cm-1峰面积比值
| 系统 | A2924cm-1 | A2954cm-1 | A2924cm-1/A2954cm-1 |
|---|---|---|---|
| 无烟煤原煤 | 0.26 | 0.19 | 1.37 |
| 无烟煤/R1复合溶液 | 0.56 | 0.21 | 2.67 |
| 烟煤原煤 | 0.84 | 0.30 | 2.80 |
| 烟煤/R1复合溶液 | 0.82 | 0.24 | 3.42 |
| 褐煤原煤 | 0.49 | 0.15 | 3.27 |
| 褐煤/R1复合溶液 | 1.72 | 0.32 | 5.38 |
| 系统 | Etotal/kcal·mol-1 | Ex /kcal·mol-1 | Ecoal/kcal·mol-1 | Eint/kcal·mol-1 |
|---|---|---|---|---|
| 无烟煤/水 | 35028.64 | -11847.54 | 47134.66 | -258.48 |
| 无烟煤/R1/水 | 32427.29 | -1211.47 | 47167.51 | -528.74 |
| 烟煤/水 | 43614.67 | -11716.70 | 16458.49 | -380.32 |
| 烟煤/R1/水 | 16814.60 | -14116.50 | 16402.62 | -604.66 |
| 褐煤/水 | -12653.86 | -1832.88 | -320.08 | -500.89 |
| 褐煤/R1/水 | -15412.01 | -14015.21 | -380.64 | -1016.16 |
表4 不同系统的相互作用能量
| 系统 | Etotal/kcal·mol-1 | Ex /kcal·mol-1 | Ecoal/kcal·mol-1 | Eint/kcal·mol-1 |
|---|---|---|---|---|
| 无烟煤/水 | 35028.64 | -11847.54 | 47134.66 | -258.48 |
| 无烟煤/R1/水 | 32427.29 | -1211.47 | 47167.51 | -528.74 |
| 烟煤/水 | 43614.67 | -11716.70 | 16458.49 | -380.32 |
| 烟煤/R1/水 | 16814.60 | -14116.50 | 16402.62 | -604.66 |
| 褐煤/水 | -12653.86 | -1832.88 | -320.08 | -500.89 |
| 褐煤/R1/水 | -15412.01 | -14015.21 | -380.64 | -1016.16 |
| 系统 | D/cm2·s-1 |
|---|---|
| 无烟煤/水 | 1.52×10-5 |
| 无烟煤/R1复合溶液/水 | 1.98×10-5 |
| 烟煤/水 | 1.75×10-5 |
| 烟煤/R1复合溶液/水 | 2.14×10-5 |
| 褐煤/水 | 1.94×10-5 |
| 褐煤/R1复合溶液/水 | 2.15×10-5 |
表 5 不同系统的扩散系数
| 系统 | D/cm2·s-1 |
|---|---|
| 无烟煤/水 | 1.52×10-5 |
| 无烟煤/R1复合溶液/水 | 1.98×10-5 |
| 烟煤/水 | 1.75×10-5 |
| 烟煤/R1复合溶液/水 | 2.14×10-5 |
| 褐煤/水 | 1.94×10-5 |
| 褐煤/R1复合溶液/水 | 2.15×10-5 |
| [1] | 程坤. 我国煤炭资源勘查开发主要问题及对策措施[J]. 中国煤炭, 2024, 50(7): 1-7. |
| CHENG Kun. Research on the main problems and countermeasures of coal resources exploration and development in China[J]. China Coal, 2024, 50(7): 1-7. | |
| [2] | LU Cunjin, LI Pu, XU Jinpeng, et al. Knowledge map analysis of coal mine water disaster prevention and control in China from 2000 to 2023[J]. Earth Science Informatics, 2024, 17(4): 2791-2799. |
| [3] | XU Zhihuan, ZHANG Taisheng, ZHUANG Lei, et al. The impact of coal-fired, soot on China’s industrial production and total factor energy efficiency[J]. Water, Air, & Soil Pollution, 2024, 235(9): 565. |
| [4] | 张静, 秦文欣. 煤场扬尘污染机理及治理技术研究[J]. 中国新技术新产品, 2024(19): 128-130. |
| ZHANG Jing, QIN Wenxin. Study on mechanism and control technology of dust pollution in coal yard[J]. New Technology & New Products of China, 2024(19): 128-130. | |
| [5] | 杨鑫. 煤炭洗选加工过程中存在的环境污染及防治探究[J]. 矿业装备, 2023(8): 72-74. |
| YANG Xin. Study on environmental pollution and its prevention in coal washing and processing[J]. Mining Equipment, 2023(8): 72-74. | |
| [6] | 王俊琪. 石煤与烟煤的混燃污染物排放特性研究[J]. 能源技术与管理, 2021, 46(6): 136-138. |
| WANG Junqi. Research on discharge features of pollutant from co-combustion of stone coal and bituminous coal[J]. Energy Technology and Management, 2021, 46(6): 136-138. | |
| [7] | GAO Mingzhong, LI Hongmei, ZHAO Yun, et al. Mechanism of micro-wetting of highly hydrophobic coal dust in underground mining and new wetting agent development[J]. International Journal of Mining Science and Technology, 2023, 33(1): 31-46. |
| [8] | LIANG Yuehui, SHI Biming, YUE Jiwei, et al. Anisotropic damage mechanism of coal seam water injection with multiphase coupling[J]. ACS Omega, 2024, 9(14): 16400-16410. |
| [9] | ZAN Yang, WU Yang, RAN Dongsheng, et al. Nano-emulsion stabilized by multiple surfactants: An effective alternative for enhancing coal seam water injection effect[J]. Journal of Molecular Liquids, 2024, 398: 124150. |
| [10] | GONG Bin, ZHANG Yongbin, FAN Yaqing, et al. A novel approach to model enhanced coal bed methane recovery with discrete fracture characterizations in a geochemical simulator[J]. Journal of Petroleum Science and Engineering, 2014, 124: 198-208. |
| [11] | WANG Xiaohan, JIANG Bingyou, YUAN Liang, et al. Study on coupling chelating agent and surfactant to enhance coal wettability: Experimental and theoretical discussion[J]. Fuel, 2023, 342: 127861. |
| [12] | XU Lianman, LI Yajing, DU Linlin, et al. Study on the effect of SDBS and SDS on deep coal seam water injection[J]. Science of the Total Environment, 2023, 856: 158930. |
| [13] | NIU Wenjin, NIE Wen, YUAN Mingyue, et al. Study of the microscopic mechanism of lauryl glucoside wetting coal dust: Environmental pollution prevention and control[J]. Journal of Hazardous Materials, 2021, 412: 125223. |
| [14] | TIAN Qifan, NIE Wen, BAO Qiu, et al. Research on coal dust pollution prevention and control based on co-solvent association: Macro-micro experiments and molecular dynamics simulations[J]. Applied Surface Science, 2024, 651: 159289. |
| [15] | WANG Kai, XU Min, ZHOU Biao, et al. Study on the effects of inorganic salts and ionic surfactants on the wettability of coal based on the experimental and molecular dynamics investigations[J]. Energy, 2024, 300: 131610. |
| [16] | LIU Huajun, LI Ruoxi, NIE Wen, et al. Enhancing understanding of anionic surfactant adsorption mechanism and hydrophilic modification of bituminous coal for effective dust suppression[J]. Surfaces and Interfaces, 2024, 46: 103948. |
| [17] | LI Jiajun, KONG Shaoqi, YAN Guochao, et al. Adsorption mechanism of alkylphenol ethoxylates surfactants (APEO) on anthracite surface: A combined experimental, DFT and molecular dynamics study[J]. Journal of Molecular Liquids, 2024, 396: 124030. |
| [18] | BAI Xuyang, KONG Shaoqi, ZHANG Jiawei, et al. Molecular mechanism study of nonionic surfactant enhanced anionic surfactant to improve the wetting ability of anthracite dust[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 686: 133455. |
| [19] | 王岩. 不同含氧官能团对煤润湿性影响的分子动力学模拟研究[J]. 中国安全生产科学技术, 2024, 20(7): 114-120. |
| WANG Yan. Molecular dynamics simulation study on influence of different oxygen-containing functional groups on coal wettability[J]. Journal of Safety Science and Technology, 2024, 20(7): 114-120. | |
| [20] | 王银辉. SDS与AEO3复配对褐煤润湿性的影响分子动力学模拟研究[J]. 煤矿安全, 2024, 55(9): 78-84. |
| WANG Yinhui. Molecular dynamics simulation study on the effect of SDS and AEO3 complex on the wettability of lignite[J]. Safety in Coal Mines, 2024, 55(9): 78-84. | |
| [21] | JIANG Hehe, NI Guanhua, ZHU Chuanjie, et al. Molecular dynamics simulations and experimental characterization of the effect of different concentrations of [Bmim] [Cl] in aqueous solutions on the wettability of anthracite[J]. Fuel, 2022, 324: 124618. |
| [22] | 秦荣荣, 张超, 江丙友, 等. 煤层新型润湿剂的实验合成及性能分析[J]. 西安科技大学学报, 2022, 42(6): 1114-1121. |
| QIN Rongrong, ZHANG Chao, JIANG Bingyou, et al. Experimental synthesis and performance analysis of new wetting agent based on coal seam[J]. Journal of Xi’an University of Science and Technology, 2022, 42(6): 1114-1121. | |
| [23] | WANG Shiju, SHI Shulei, JIANG Bingyou, et al. Influence of surfactant adsorption on coal oxidation and wettability: Experimental discussion and model development[J]. Energy, 2024, 297: 131304. |
| [24] | SUN Jian, ZHOU Gang, WANG Cunmin, et al. Experimental synthesis and performance comparison analysis of high-efficiency wetting enhancers for coal seam water injection[J]. Process Safety and Environmental Protection, 2021, 147: 320-333. |
| [25] | 郑云婷. 低阶煤的傅里叶红外光谱实验分析[J]. 煤化工, 2023, 51(5): 66-70. |
| ZHENG Yunting. Experimental analysis of Fourier transform infrared spectroscopy of low rank coal[J]. Coal Chemical Industry, 2023, 51(5): 66-70. | |
| [26] | DWIVEDI Ankur, DWIVEDI Arpita, KUMAR Amrendra. Qualitative surface characterization of Indian Permian coal using XPS and FTIR[J]. International Journal of Coal Preparation and Utilization, 2023, 43(7): 1152-1163. |
| [27] | CHEN Cong, TANG Yuegang, GUO Xin. Comparison of structural characteristics of high-organic-sulfur and low-organic-sulfur coal of various ranks based on FTIR and Raman spectroscopy[J]. Fuel, 2022, 310: 122362. |
| [28] | 李元吉, 代诚欣, 孟上九, 等. 13C NMR、FT-IR、Raman和建模技术对烟煤和无烟煤分子结构的应用研究[J]. 太原理工大学学报, 2024, 55(6): 1063-1072. |
| LI Yuanji, DAI Chengxin, MENG Shangjiu, of Application 13 C NMR,FT-IR,Raman and modelling techniques to the molecular structure of bituminous and anthracite[J]. Journal of Taiyuan University of Technology, 2024, 55(6): 1063-1072. | |
| [29] | NOGUEIRA Raquel, Michael LÄMMERHOFER, LINDNER Wolfgang. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase[J]. Journal of Chromatography A, 2005, 1089(1/2): 158-169. |
| [30] | JI Ben, JIANG Bingyou, YUAN Liang, et al. Effect of side chain functional groups of ionic liquids on improving wettability of coal: Simulation and experimental discussion[J]. Energy, 2023, 285: 129453. |
| [31] | MENG Junqing, WANG Lijuan, Chunhui LYU, et al. Molecular simulation of the regulation mechanism of the hydrophilic structure of surfactant on the wettability of bituminous coal surface[J]. Journal of Molecular Liquids, 2023, 383: 122185. |
| [32] | 吕冬梅, 吴慧君, 陈健朋, 等. 分子动力学模拟在分散剂/表面活性剂在煤颗粒表面吸附机理方面的研究进展[J]. 燃料化学学报(中英文), 2024, 52(3): 452-460. |
| Dongmei LYU, WU Huijun, CHEN Jianpeng, et al. Research progress of molecular dynamics simulation on adsorption mechanisms of dispersants/surfactants on the surface of coal particles[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 452-460. | |
| [33] | 寇德瑞. 表面活性剂的苯环结构对煤尘润湿性的影响机制[J]. 矿业研究与开发, 2024, 44(9): 143-150. |
| KOU Derui. Influence mechanisms of the benzene ring structure of surfactant on the wettability of coal dust[J]. Mining Research and Development, 2024, 44(9): 143-150. | |
| [34] | ZHOU Gang, XING Mengyao, WANG Kaili, et al. Study on wetting behavior between CTAC and BS-12 with gas coal based on molecular dynamics simulation[J]. Journal of Molecular Liquids, 2022, 357: 118996. |
| [1] | 杨信, 满世德, 何江涛, 孔德泽, 张婷婷, 未碧贵. 基于亲/疏油双界面耦合作用的聚结除油[J]. 化工进展, 2025, 44(9): 5120-5129. |
| [2] | 齐妍, 常昊, 张磊. 基于分子动力学模拟的结构性产品配方设计方法[J]. 化工进展, 2025, 44(8): 4341-4351. |
| [3] | 李艳平, 杨涛, 王洪勋, 张城, 温国胜, 韩治成, 蓝公家, 严大洲. 三氯氢硅在氢气氛中的热分解及还原体系的反应分子动力学模拟[J]. 化工进展, 2025, 44(8): 4322-4330. |
| [4] | 曹泷, 刘贺, 郭家驹, 胡春霞, 杨卧龙, 吴学红. 管内梯度多孔镀层强化R245fa流动沸腾传热[J]. 化工进展, 2025, 44(7): 3794-3803. |
| [5] | 付沅峰, 范振忠, 臧鑫, 仝其雷, 刘金刚. 超亲水水下超疏油复合不锈钢网的制备及在油水分离中的应用[J]. 化工进展, 2025, 44(6): 3659-3670. |
| [6] | 戴月明, 周梅芳, 沈建华, 姜海波, 李春忠. TiO2纳米颗粒烧结机制分子动力学模拟[J]. 化工进展, 2025, 44(4): 2202-2214. |
| [7] | 冯鹏, 徐东海, 何冰, 刘欢腾, 杨立杰, 王攀, 刘青山. 亚/超临界水中典型硫酸盐Na2SO4和K2SO4的溶解特性及机理[J]. 化工进展, 2025, 44(3): 1706-1715. |
| [8] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [9] | 张雨涵, 赵雪淞, 吴秀琳, 张婷, 杨龙凤. 纳米高岭土/环氧树脂复合材料的制备及其分子动力学模拟[J]. 化工进展, 2025, 44(11): 6477-6487. |
| [10] | 何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000. |
| [11] | 章超, 孙金声, 吕开河, 黄贤斌, 戴嘉君, 李茂, 姚如钢. 疏水材料在油田化学领域研究进展与展望[J]. 化工进展, 2024, 43(11): 6293-6309. |
| [12] | 裴文艺, 陈子阳, 赵萌, 姜红, 陈日志. 预润湿对Janus陶瓷膜制备及布气性能的影响[J]. 化工进展, 2024, 43(1): 353-363. |
| [13] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
| [14] | 赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813. |
| [15] | 孙宪航, 任铸, 张国军, 孙媛, 范开峰, 黄维秋. 超临界CO2作用下甲苯在活性炭中的脱附机理[J]. 化工进展, 2022, 41(S1): 631-636. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |