化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6293-6309.DOI: 10.16085/j.issn.1000-6613.2023-1939
• 材料科学与技术 • 上一篇
章超1(), 孙金声1(), 吕开河1, 黄贤斌1, 戴嘉君1, 李茂2, 姚如钢3
收稿日期:
2023-11-03
修回日期:
2023-12-25
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
孙金声
作者简介:
章超(1995—),男,博士研究生,研究方向为钻井液材料研发。E-mail:2249149267@qq.com。
基金资助:
ZHANG Chao1(), SUN Jinsheng1(), LYU Kaihe1, HUANG Xianbin1, DAI Jiajun1, LI Mao2, YAO Rugang3
Received:
2023-11-03
Revised:
2023-12-25
Online:
2024-11-15
Published:
2024-12-07
Contact:
SUN Jinsheng
摘要:
在油田化学领域,通过研选合适的疏水材料对井壁或储层岩石表面进行润湿性改造,可以减弱表面对水相的亲和性,从而达到抑制岩石水化、减少储层水相圈闭及改善储层油气渗流能力等目的,极大提高油气田的开发效益。本文简要介绍了疏水材料的种类并分析了疏水材料形成憎水性表面的原理,重点从稳定井壁、保护储层、提高油气采收率和改善乳液及泡沫稳定性四个关键方面阐述了疏水材料在油田化学领域中的研究进展。针对于目前存在的不足,展望了疏水材料作为一种油田化学助剂,未来应向着低成本、强配伍、多功能、环境友好型方向发展,以满足其在油田化学领域中不断增长的需求。
中图分类号:
章超, 孙金声, 吕开河, 黄贤斌, 戴嘉君, 李茂, 姚如钢. 疏水材料在油田化学领域研究进展与展望[J]. 化工进展, 2024, 43(11): 6293-6309.
ZHANG Chao, SUN Jinsheng, LYU Kaihe, HUANG Xianbin, DAI Jiajun, LI Mao, YAO Rugang. Research progress and prospects of hydrophobic materials in oilfield chemistry[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6293-6309.
类别 | 结构/组成 | 代表物质 | 产生低表面能效应原理 | 成本及表面能对比 |
---|---|---|---|---|
有机氟(短链) | 短碳链化合物,氢部分或全部被氟替代 | 氟甲烷CH3F、四氟化碳CF4 | F原子电负性高,形成弱极性C-F键 | 成本高,降低表面能效果优 |
有机硅 | 硅原子与碳基团结合,形成硅-碳键 | 二甲基硅烷(CH3)2SiH2、乙基甲基硅氧烷CH3Si(O)C2H5 | 有机基团降低分子间作用力,Si-O键稳定 | 成本较高,降低表面能效果较优 |
长烷基链化合物 | 长直链或支链饱和碳氢化合物 | 十二烷、硬脂酸 | 长链定向减张力,低能界面稳定 | 成本最低,降低表面能效果最差 |
氟化硅氧烷 | 硅氧烷结构,部分氢被氟替代 | 三氟丙基甲基硅氧烷、全氟烷氧基硅氧烷 | 结合了有机氟侧链疏水性和硅氧链稳定性 | 成本最高,降低表面能效果最优 |
长链含氟烷基化合物 | 长碳链,部分碳原子氢被氟替代 | 全氟辛烷磺酸、全氟十二烷酸 | C-F键比C-H键更稳定,形成的低能界面更稳定 |
表1 常用的小分子疏水材料
类别 | 结构/组成 | 代表物质 | 产生低表面能效应原理 | 成本及表面能对比 |
---|---|---|---|---|
有机氟(短链) | 短碳链化合物,氢部分或全部被氟替代 | 氟甲烷CH3F、四氟化碳CF4 | F原子电负性高,形成弱极性C-F键 | 成本高,降低表面能效果优 |
有机硅 | 硅原子与碳基团结合,形成硅-碳键 | 二甲基硅烷(CH3)2SiH2、乙基甲基硅氧烷CH3Si(O)C2H5 | 有机基团降低分子间作用力,Si-O键稳定 | 成本较高,降低表面能效果较优 |
长烷基链化合物 | 长直链或支链饱和碳氢化合物 | 十二烷、硬脂酸 | 长链定向减张力,低能界面稳定 | 成本最低,降低表面能效果最差 |
氟化硅氧烷 | 硅氧烷结构,部分氢被氟替代 | 三氟丙基甲基硅氧烷、全氟烷氧基硅氧烷 | 结合了有机氟侧链疏水性和硅氧链稳定性 | 成本最高,降低表面能效果最优 |
长链含氟烷基化合物 | 长碳链,部分碳原子氢被氟替代 | 全氟辛烷磺酸、全氟十二烷酸 | C-F键比C-H键更稳定,形成的低能界面更稳定 |
类别 | 疏水原理 | 表面水分布形态 |
---|---|---|
Young模型[ | 研究了液体在光滑基材表面的润湿性,描述固气、固液、液气界面张力γsg、γsl、γlg与接触角θ之间的关系,即γsg-γsl=γlgcosθ | |
Wenzel模型[ | 研究了液体在粗糙基材表面的润湿性,水相对表面凹槽的填充增大了水相的接触面积,若材料表面亲水,粗糙结构会增强表面的亲水性,反之,则更加疏水 | |
Cassie模型[ | 对Wenzel模型进一步研究,提出了复合接触理论[ | |
亚稳态模型[ | 基于能量势垒原则,外部干扰导致固液间气相不稳,水相浸润,呈现从Cassie到Wenzel的亚稳态 | |
荷叶态模型 | 荷叶表面含蜡状物质,产生自清洁的关键是表面结构,微米级乳突和纳米级小纤毛,能锁住空气、托起水滴,阻隔浸润 | |
壁虎态模型 | 壁虎脚掌表面有大量微米级刚毛和纳米级毛状物,形成密封和开放气囊,密封气囊与大气间的压差可产生强黏附力,开放气囊可提高表面疏水性,赋予壁虎强黏附性和超疏水性[ |
表2 疏水基材表面的不同润湿模型
类别 | 疏水原理 | 表面水分布形态 |
---|---|---|
Young模型[ | 研究了液体在光滑基材表面的润湿性,描述固气、固液、液气界面张力γsg、γsl、γlg与接触角θ之间的关系,即γsg-γsl=γlgcosθ | |
Wenzel模型[ | 研究了液体在粗糙基材表面的润湿性,水相对表面凹槽的填充增大了水相的接触面积,若材料表面亲水,粗糙结构会增强表面的亲水性,反之,则更加疏水 | |
Cassie模型[ | 对Wenzel模型进一步研究,提出了复合接触理论[ | |
亚稳态模型[ | 基于能量势垒原则,外部干扰导致固液间气相不稳,水相浸润,呈现从Cassie到Wenzel的亚稳态 | |
荷叶态模型 | 荷叶表面含蜡状物质,产生自清洁的关键是表面结构,微米级乳突和纳米级小纤毛,能锁住空气、托起水滴,阻隔浸润 | |
壁虎态模型 | 壁虎脚掌表面有大量微米级刚毛和纳米级毛状物,形成密封和开放气囊,密封气囊与大气间的压差可产生强黏附力,开放气囊可提高表面疏水性,赋予壁虎强黏附性和超疏水性[ |
体系配方 | 条件 | AV/mPa·s | PV/mPa·s | YP/Pa | FLAPI/mL | FLHTHP/mL |
---|---|---|---|---|---|---|
配方+50g/L 10μm碳酸钙 | 老化前 | 37.5 | 16.0 | 21.5 | 3.8 | — |
150℃老化16h后 | 15.0 | 14.0 | 1.0 | 22.0 | 31.0 | |
配方+50g/L 10μm碳酸钙(STG) | 老化前 | 58.0 | 34.0 | 24.0 | 6.4 | — |
150℃老化16h后 | 20.5 | 17.0 | 3.5 | 3.8 | 12.0 |
表3 碳酸钙疏水改性前后对水基钻井液体系流变和滤失性能影响[46]
体系配方 | 条件 | AV/mPa·s | PV/mPa·s | YP/Pa | FLAPI/mL | FLHTHP/mL |
---|---|---|---|---|---|---|
配方+50g/L 10μm碳酸钙 | 老化前 | 37.5 | 16.0 | 21.5 | 3.8 | — |
150℃老化16h后 | 15.0 | 14.0 | 1.0 | 22.0 | 31.0 | |
配方+50g/L 10μm碳酸钙(STG) | 老化前 | 58.0 | 34.0 | 24.0 | 6.4 | — |
150℃老化16h后 | 20.5 | 17.0 | 3.5 | 3.8 | 12.0 |
1 | AHMAD Darem, VAN DEN BOOGAERT Inge, MILLER Jeremey, et al. Hydrophilic and hydrophobic materials and their applications[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(22): 2686-2725. |
2 | Satyanarayana RAJU P, SHARMA AVNL, GOPICHAND Allaka. Inexpensive production of hydrophobic and corrosion resistant titania-silica composite coatings for deep water sandwich pipe applications[J]. Australian Journal of Mechanical Engineering, 2023: 1-6. |
3 | LI Guo, YUE Jiang, GUO Chenhao, et al. Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating[J]. Construction and Building Materials, 2018, 169: 1-7. |
4 | ESTEVES Carlos, AHMED Hawreen, Inês FLORSE-COLEN, et al. The influence of hydrophobic protection on building exterior claddings[J]. Journal of Coatings Technology and Research, 2019, 16(5): 1379-1388. |
5 | 罗刚, 任坤峰, 邢希金, 等. 低孔低渗储层完井改造一体化工作液的研究与应用[J]. 钻井液与完井液, 2017, 34(3): 117-121. |
LUO Gang, REN Kunfeng, XING Xijin, et al. Study and application of a composite well completion and stimulation fluid for low porosity and low permeability reservoirs[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 117-121. | |
6 | WANG Jiehao, ELSWORTH Derek, WU Yu, et al. The influence of fracturing fluids on fracturing processes: A comparison between water, oil and SC-CO2 [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 299-313. |
7 | 刘雪芬, 康毅力, 罗平亚, 等. 界面修饰对致密砂岩气藏微孔系统渗流的调控[J]. 油田化学, 2015, 32(1): 137-140. |
LIU Xuefen, KANG Yili, LUO Pingya, et al. Seepage regulation of micro-pore system in tight sandstone gas reservoirs by interfacial modification[J]. Oilfield Chemistry, 2015, 32(1): 137-140. | |
8 | YUE Ye, CHEN Shuya, WANG Ziqi, et al. Improving wellbore stability of shale by adjusting its wettability[J]. Journal of Petroleum Science and Engineering, 2018, 161: 692-702. |
9 | HUANG Xianbin, DAI Zhiwen, ZHANG Chao, et al. Improving the performance of a polyamine shale inhibitor by introducing a hydrophobic group in oil and gas development[J]. Fuel, 2024, 355: 129435. |
10 | 刘雪芬, 康毅力, 罗平亚, 等. 氟化物对致密砂岩气体渗流能力的影响[J]. 石油学报, 2015, 36(8): 995-1003. |
LIU Xuefen, KANG Yili, LUO Pingya, et al. Impact of fluoride on seepage ability of tight sandstone gas[J]. Acta Petrolei Sinica, 2015, 36(8): 995-1003. | |
11 | 刘雪芬, 康毅力, 游利军, 等. 双疏性表面处理预防致密储层水相圈闭损害实验研究[J]. 天然气地球科学, 2009, 20(2): 292-296. |
LIU Xuefen, KANG Yili, YOU Lijun, et al. Experimental study on amphiphobic surface treating to prevent reservoir from aqueous phase trapping damage[J]. Natural Gas Geoscience, 2009, 20(2): 292-296. | |
12 | 曹攀, 刘德, 刘雨晗. 船用低表面能防污材料的研究进展[J]. 化工新型材料, 2022, 50(3): 60-63. |
CAO Pan, LIU De, LIU Yuhan. Research progress on marine antifouling material with low surface energy[J]. New Chemical Materials, 2022, 50(3): 60-63. | |
13 | YAN Yongli, CAI Yuxiu, LIU Xiaochun, et al. Hydrophobic modification on the surface of SiO2 nanoparticle: Wettability control[J]. Langmuir, 2020, 36(49): 14924-14932. |
14 | 刘思辰, 徐剑莹, 王小青, 等. 纳米TiO2处理木材的表面疏水性能初探[J]. 木材工业, 2014, 28(3): 26-29. |
LIU Sichen, XU Jianying, WANG Xiaoqing, et al. Evaluation of surface hydrophobic performance of nano-TiO2 modified wood[J]. China Wood Industry, 2014, 28(3): 26-29. | |
15 | 周缘, 韩杰, 叶山富, 等. 改性二氧化硅纳米粒子超疏水整理涤纶织物及其性能[J]. 毛纺科技, 2023, 51(8): 48-53. |
ZHOU Yuan, HAN Jie, YE Shanfu, et al. Superhydrophobic finishing of polyester fabric by modified silica nanoparticles and its performance[J]. Wool Textile Journal, 2023, 51(8): 48-53. | |
16 | 徐萌, 董爱学, 王维明. 自交联型聚丙烯酸酯/聚氨酯复合乳液的疏水性能[J]. 印染, 2023, 49(3): 17-20. |
XU Meng, DONG Aixue, WANG Weiming. Hydrophobic properties of self-crosslinking polyacrylate/polyurethane composite emulsion[J]. China Dyeing & Finishing, 2023, 49(3): 17-20. | |
17 | SUN Jingyao, LI Hanwen, HUANG Yao, et al. Simple and affordable way to achieve polymeric superhydrophobic surfaces with biomimetic hierarchical roughness[J]. ACS Omega, 2019, 4(2): 2750-2757. |
18 | 许志坚, 安秋凤, 杨博文, 等. 纳米杂化耐磨超疏水环氧树脂涂层的构筑及性能[J]. 精细化工, 2023, 40(10): 2222-2230. |
XU Zhijian, AN Qiufeng, YANG Bowen, et al. Construction and properties of nano-hybrid wear-resistant superhydrophobic epoxy resin coatings[J]. Fine Chemicals, 2023, 40(10): 2222-2230. | |
19 | 马逸平, 樊武厚, 吴晋川, 等. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(2): 183-188. |
MA Yiping, FAN Wuhou, WU Jinchuan, et al. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents[J]. Journal of Textile Research, 2022, 43(2): 183-188. | |
20 | WAN Zhihao, WANG Yuan, SHEN Chao, et al. Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes[J]. Applied Thermal Engineering, 2022, 216: 119075. |
21 | ALIZADEH Azar, BAHADUR Vaibhav, KULKARNI Ambarish, et al. Hydrophobic surfaces for control and enhancement of water phase transitions[J]. MRS Bulletin, 2013, 38(5): 407-411. |
22 | 金竹, 邹守顺, 周昌林, 等. IPN型含氟聚硅氧烷/PP疏水材料的制备及性能[J]. 精细化工, 2022, 39(4): 712-718. |
JIN Zhu, ZOU Shoushun, ZHOU Changlin, et al. Preparation and properties of interpenetrating network fluoropolysiloxane/polypropylene hydrophobic materials[J]. Fine Chemicals, 2022, 39(4): 712-718. | |
23 | 鲍玖文, 胡文文, 张鹏, 等. 有机硅憎水剂对混凝土强度与毛细吸水性能的影响[J]. 硅酸盐学报, 2020, 48(10): 1644-1652. |
BAO Jiuwen, HU Wenwen, ZHANG Peng, et al. Effect of organic silicon hydrophobic agent on strength and capillary absorption of concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1644-1652. | |
24 | 丁李钰, 黄毅萍, 鲍俊杰, 等. 长烷基链对水性聚氨酯在非极性基材上附着力的影响[J]. 精细化工, 2023, 40(2): 424-429. |
DING Liyu, HUANG Yiping, BAO Junjie, et al. Effect of long alkyl side chain on adhesion of waterborne polyurethane on non-polar substrate[J]. Fine Chemicals, 2023, 40(2): 424-429. | |
25 | LAFUMA Aurélie, David QUÉRÉ. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457-460. |
26 | LIU Kesong, ZHANG Milin, ZHAI Jin, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Applied Physics Letters, 2008, 92(18): 183103. |
27 | YOUNG Thomas. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
28 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
29 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(0): 546-551. |
30 | 隋涛, 汪家道, 陈大融. Cassie状态到Wenzel状态转换的能量分析[J]. 化工学报, 2011, 62(5): 1352-1357. |
SUI Tao, WANG Jiadao, CHEN Darong. Energy analysis for transition from Cassie state to Wenzel state[J]. CIESC Journal, 2011, 62(5): 1352-1357. | |
31 | PATANKAR Neelesh A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102. |
32 | WANG Shutao, LIU Kesong, YAO Xi, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. |
33 | FENG Lin, LI Shuhong, LI Yingshun, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
34 | Manohar LAL. Shale stability: Drilling fluid interaction and shale strength[C]// SPE Asia Pacific Oil and Gas Conference and Exhibition. April 20-22, 1999. Jakarta, Indonesia. SPE, 1999: SPE-54356-MS. |
35 | 沈建文, 陈军斌, 屈展. 泥页岩井壁稳定研究及在临盘地区的应用[J]. 天然气工业, 2006, 26(7): 68-70. |
SHEN Jianwen, CHEN Junbin, QU Zhan. Study on mud shale stability and its application[J]. Natural Gas Industry, 2006, 26(7): 68-70. | |
36 | 张定宇, 邓金根, 李大华, 等. 页岩储层水敏性及井壁失稳规律分析[J]. 科学技术与工程, 2013, 13(34): 10268-10271. |
ZHANG Dingyu, DENG Jingen, LI Dahua, et al. The law of wellbore instability in non-water sensitive gas shales[J]. Science Technology and Engineering, 2013, 13(34): 10268-10271. | |
37 | 刘喜亮, 由福昌, 吴素珍, 等. 页岩井壁失稳机理分析及钻井液对策研究[J]. 当代化工, 2020, 49(1): 129-133. |
LIU Xiliang, YOU Fuchang, WU Suzhen, et al. Mechanism analysis of shale wellbore instability and drilling fluid countermeasures[J]. Contemporary Chemical Industry, 2020, 49(1): 129-133. | |
38 | ZHANG Chao, Kaihe LYU, GONG Jiaqin, et al. Synthesis of a hydrophobic quaternary ammonium salt as a shale inhibitor for water-based drilling fluids and determination of the inhibition mechanism[J]. Journal of Molecular Liquids, 2022, 362: 119474. |
39 | FERREIRA Conny Cerai, TEIXEIRA Gleber Tacio, LACHTER Elizabeth Roditi, et al. Partially hydrophobized hyperbranched polyglycerols as non-ionic reactive shale inhibitors for water-based drilling fluids[J]. Applied Clay Science, 2016, 132/133: 122-132. |
40 | ZHANG Fan, SUN Jinsheng, LI Qi, et al. Mechanism of organosilicate polymer as high-temperature resistant inhibitor in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128489. |
41 | NI Xiaoxiao, JIANG Guancheng, LI Yiying, et al. Synthesis of superhydrophobic nanofluids as shale inhibitor and study of the inhibition mechanism[J]. Applied Surface Science, 2019, 484: 957-965. |
42 | 蒋官澄, 倪晓骁, 李武泉, 等. 超双疏强自洁高效能水基钻井液[J]. 石油勘探与开发, 2020, 47(2): 390-398. |
JIANG Guancheng, NI Xiaoxiao, LI Wuquan, et al. Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids[J]. Petroleum Exploration and Development, 2020, 47(2): 390-398. | |
43 | HUANG Xianbin, SUN Jinsheng, LI He, et al. Fabrication of a hydrophobic hierarchical surface on shale using modified nano-SiO2 for strengthening the wellbore wall in drilling engineering[J]. Engineering, 2022, 11: 101-110. |
44 | LI He, SUN Jinsheng, Kaihe LYU, et al. Wettability alteration to maintain wellbore stability of shale formation using hydrophobic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635: 128015. |
45 | GENG Yuan, SUN Jinsheng, XIE Shuixiang, et al. Novel use of a superhydrophobic nanosilica performing wettability alteration and plugging in water-based drilling fluids for wellbore strengthening[J]. Energy & Fuels, 2022, 36(12): 6144-6158. |
46 | 李方. 改变井壁岩石和泥饼亲水通道的钻井液研究[D]. 成都: 西南石油大学, 2017. |
LI Fang. Study on changing with hydrophilic channel of wellbore rock and mud cake drilling fluid[D]. Chengdu: Southwest Petroleum University, 2017. | |
47 | Brant BENNION D. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations[J]. Journal of Canadian Petroleum Technology, 2002, 41(11): 29-36. |
48 | 孙金声, 许成元, 康毅力, 等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10. |
SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. | |
49 | 安一梅, 李丽华, 赵凯强, 等. 低渗透油气藏用防水锁剂体系的制备与性能评价[J]. 油田化学, 2021, 38(1): 19-23. |
AN Yimei, LI Lihua, ZHAO Kaiqiang, et al. Preparation and performance evaluation of waterproof lock agent system for low permeability oil and gas reservoir[J]. Oilfield Chemistry, 2021, 38(1): 19-23. | |
50 | 罗红芳, 张文哲. 钻井液用防水锁剂在延长油田水平井应用技术[J]. 当代化工, 2018, 47(12): 2665-2668. |
LUO Hongfang, ZHANG Wenzhe. Application of waterproof lock agent for drilling fluid in horizontal wells in Yanchang oilfield[J]. Contemporary Chemical Industry, 2018, 47(12): 2665-2668. | |
51 | 祝琦, 蒋官澄, 杨艳明, 等. 润湿性改变对压裂液返排的影响[J]. 钻井液与完井液, 2014, 31(6): 66-69. |
ZHU Qi, JIANG Guancheng, YANG Yanming, et al. Effect of wettability alteration on backflow of fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 66-69. | |
52 | 李秀红, 杨桦, 陈喜田, 等. 润湿反转提高压裂液返排技术在吉林油田新119区块的应用[J]. 钻采工艺, 2004, 27(6): 51-52. |
LI Xiuhong, YANG Hua, CHEN Xitian, et al. Application of wettability reversal technique for improving fracturing fluid flow-back in Xin 119 black of Jilin oilfield[J]. Drilling & Production Technology, 2004, 27(6): 51-52. | |
53 | 邓超, 侯宝峰, 杨熙午, 等. 表面活性剂改变油藏润湿性提高采收率的机理[J]. 当代化工, 2022, 51(4): 757-761. |
DENG Chao, HOU Baofeng, YANG Xiwu, et al. Mechanistic study on wettability alteration of reserviors and its EOR induced by surfactants[J]. Contemporary Chemical Industry, 2022, 51(4): 757-761. | |
54 | LIU Guangfeng, WANG Hengli, TANG Jiachao, et al. Effect of wettability on oil and water distribution and production performance in a tight sandstone reservoir[J]. Fuel, 2023, 341: 127680. |
55 | 黄贵花, 杨文博, 贾红娟. 纳米聚硅材料降压效果实验研究[J]. 非常规油气, 2022, 9(2): 79-84. |
HUANG Guihua, YANG Wenbo, JIA Hongjuan. Experimental research on the decompression effect of nano-polysilicon materials[J]. Unconventional Oil & Gas, 2022, 9(2): 79-84. | |
56 | 刘卫东. 低渗透油田润湿反转降压增注技术及应用[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S1): 146-149. |
LIU Weidong. Application of depressure and increasing injection technology in low permeability oilfield[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(S1): 146-149. | |
57 | LIU Yulong, SHE Yuehui, ZHANG Fan, et al. Mechanism of nano-depressurization and injection-augmenting technology and its application in China’s oilfields: Recent advances and perspectives[J]. Energy & Fuels, 2022, 36(18): 10751-10765. |
58 | FENG Qing, LI Nanxiao, HUANG Junzi, et al. Case study on the nano-polysilicon materials’ depressurisation and injection-increasing technology in offshore Bohaibay oilfied Kl21-1[C]// Offshore Technology Conference Asia. November 2~6, 2020. Kuala Lumpur, Malaysia: Offshore Technology Conference, 2020: OTC-30407-MS. |
59 | 吴非, 狄勤丰, 顾春元, 等. 疏水纳米SiO2降低岩心流动阻力效果的室内实验研究[J]. 钻采工艺, 2008, 31(2): 102-103. |
WU Fei, DI Qinfeng, GU Chunyuan, et al. Experimental study on the reduction flowing resistance through rock microchannel with nanoparticles sio2 adsorbing method[J]. Drilling & Production Technology, 2008, 31(2): 102-103. | |
60 | 胡雪滨, 李释然, 吴华. 聚硅纳米增注技术在江陵凹陷高盐敏感性油藏中的运用[J]. 石油天然气学报, 2012, 34(7): 129-131. |
HU Xuebin, LI Shiran, WU Hua. The application of poly-silicon mano-augmented injection technology in high-salt sensitivity reservoirs in Jiangling depression[J]. Journal of Oil and Gas Technology, 2012, 34(7): 129-131. | |
61 | 任坤峰, 舒福昌, 林科雄, 等. 适合稠油油藏注水井的表面改性降压增注技术[J]. 科学技术与工程, 2016, 16(28): 70-74. |
REN Kunfeng, SHU Fuchang, LIN Kexiong, et al. Surface modification decompression and augmented injection system for water injection well in heavy oil reservoir[J]. Science Technology and Engineering, 2016, 16(28): 70-74. | |
62 | 王彦玲, 金家锋, 董红岩, 等. 用于解水锁的气润湿反转剂的合成与性能评价[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 85-90. |
WANG Yanling, JIN Jiafeng, DONG Hongyan, et al. Synthesis and performance evaluation of wettability reversal agent for removing water lock effect[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2015, 30(5): 85-90. | |
63 | LI Kewen, FIROOZABADI Abbas. Phenomenological modeling of critical condensate saturation and relative permeabilities in gas/condensate systems[J]. SPE Journal, 2000, 5(2): 138-147. |
64 | WANG Yanling, JIN Jiafeng, MA Li, et al. Influence of wettability alteration to preferential gas-wetting on displacement efficiency at elevated temperatures[J]. Journal of Dispersion Science and Technology, 2015, 36(9): 1274-1281. |
65 | LIU Y, ZHENG H, HUANG G, et al. Improving production in gas/condensate reservoirs by wettability alteration to gas wetness[C]//SPE/DOE Symposium on Improved Oil Recovery. USA: SPE, 2006: SPE-99739-MS. |
66 | LIU Yijiang, ZHENG Hongwen, HUANG Guixiong, et al. Production enhancement in gas-condensate reservoirs by altering wettability to gas wetness: Field application[C]//SPE Symposium on Improved Oil Recovery. April 20~23, 2008. USA: SPE, 2008: SPE-112750-MS. |
67 | 熊邦泰. 油基钻井液乳状液稳定性机理研究[D]. 荆州: 长江大学, 2012. |
XIONG Bangtai. A study of emulsion stability mechanism of oil based drilling fluid[D]. Jingzhou: Yangtze University, 2012. | |
68 | 刘刚, 姜超, 李超, 等. 油包水型乳状液高温稳定性[J]. 钻井液与完井液, 2021, 38(4): 404-411. |
LIU Gang, JIANG Chao, LI Chao, et al. Study on high temperature stability of invert emulsion[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 404-411. | |
69 | 艾加伟, 庞敏, 陈馥, 等. DSW-S纳米颗粒对油基钻井液的稳定作用[J]. 油田化学, 2016, 33(1): 5-8. |
AI Jiawei, PANG Min, CHEN Fu, et al. Effect of DSW-S nanoparticle on the stability of oil-based drilling fluid[J]. Oilfield Chemistry, 2016, 33(1): 5-8. | |
70 | AGARWAL Sushant, PHUOC Tran X, SOONG Yee, et al. Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas[J]. The Canadian Journal of Chemical Engineering, 2013, 91(10): 1641-1649. |
71 | 罗陶涛, 段敏, 杨刚. 基于Pickering乳状液的油基钻井液乳化稳定性能研究[J]. 钻采工艺, 2015, 38(1): 99-101. |
LUO Taotao, DUAN Min, YANG Gang. Research on oil-based drilling fluid emulsion stability based on Pickering emulsion[J]. Drilling & Production Technology, 2015, 38(1): 99-101. | |
72 | HUANG Xianbin, MENG Xu, WU Leping, et al. Improvement of emulsion stability and plugging performance of nanopores using modified polystyrene nanoparticles in invert emulsion drilling fluids[J]. Frontiers in Chemistry, 2022, 10: 890478. |
73 | 杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(5): 1675-1681. |
YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Research progresses on nanoparticle-stabilized foams in oil and gas production[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1675-1681. | |
74 | 李兆敏, 侯大炜, 鹿腾, 等. 疏水型SiO2纳米颗粒稳定泡沫机理与泡沫耐温性能评价[J]. 油田化学, 2019, 36(3): 494-500. |
LI Zhaomin, HOU Dawei, LU Teng, et al. Properties of hydrophobic SiO2 nanoparticles stabilized foam and it’s temperature resistance evaluation[J]. Oilfield Chemistry, 2019, 36(3): 494-500. | |
75 | 李强, 李志勇, 张浩东, 等. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液, 2020, 37(1): 23-30. |
LI Qiang, LI Zhiyong, ZHANG Haodong, et al. Study on foam drilling fluid stabilized with nanomaterials optimized with RSM[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 23-30. | |
76 | DARDIR M M, ELSAYED AHMED Hany, FATTAH M ABD EL, et al. Propylene glycol mono and di stearates as water in oil emulsifiers for oil-well drilling fluids[J]. Egyptian Journal of Petroleum, 2018, 27(4): 1035-1041. |
77 | 马腾飞. 裂缝性地层高吸油膨胀树脂堵漏剂及作用机理研究[J]. 当代化工研究, 2021(24): 24-26. |
MA Tengfei. Study on characteristics and mechanisms of an oil-absorbing resin plugging agent used for fractured formation[J]. Modern Chemical Research, 2021(24): 24-26. | |
78 | CHEN Yanru, WU Ruonan, ZHOU Jing, et al. A novel hyper-cross-linked polymer for high-efficient fluid-loss control in oil-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127004. |
79 | ZHOU Yan, PU Xiaolin. Lipophilic rheology modifier and its application in oil-based drilling fluids[J]. Journal of Applied Polymer Science, 2022, 139(3): e51502. |
[1] | 裴强, 胡文静, 聂丽珠, 史亚楠, 丁爱祥. 刺激响应性聚集诱导发光凝胶因子的设计、合成及性能[J]. 化工进展, 2023, 42(6): 3105-3113. |
[2] | 詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313. |
[3] | 马瑞,江琦. 由无机特殊表面结构构造的超疏水材料[J]. 化工进展, 2019, 38(9): 4119-4130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |