化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7065-7074.DOI: 10.16085/j.issn.1000-6613.2024-1880
• 材料科学与技术 • 上一篇
徐猛猛(
), 黄启广, 郑涛(
), 回天力, 刘海燕, 张睿, 孟祥海, 刘植昌(
)
收稿日期:2024-11-15
修回日期:2025-02-26
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
郑涛,刘植昌
作者简介:徐猛猛(1992—),男,博士研究生,研究方向为离子液体、炭材料。E-mail:xm1324010205@sina.com。
XU Mengmeng(
), HUANG Qiguang, ZHENG Tao(
), HUI Tianli, LIU Haiyan, ZHANG Rui, MENG Xianghai, LIU Zhichang(
)
Received:2024-11-15
Revised:2025-02-26
Online:2025-12-25
Published:2026-01-06
Contact:
ZHENG Tao, LIU Zhichang
摘要:
为解决氯铝酸离子液体催化制备萘沥青过程中,碱液处理法分离萘沥青与氯铝酸离子液体所面临的离子液体结构被破坏、产生大量废碱液等诸多弊端,采用二甲苯液液萃取法对萘聚合反应混合物中的萘沥青予以分离,并研究了其萃取分离规律。结果表明,分子量较小、芳香性较高的萘沥青组分被优先萃取出来;经过5次连续萃取后,萘聚合反应混合物中70%的萘沥青被萃出,仅需对少量夹带的氯铝酸离子液体予以碱洗及水洗等处理,即可使萘沥青的灰分值降低至0.0016%,且萃余相中的氯铝酸离子液体可重复使用。与传统碱液处理法相比,采用该方法所制备的萘沥青具有分子量较小且分布较集中、软化点较低的特点,以其为前体,可制备出各向异性组分含量高达99%的优质中间相沥青。
中图分类号:
徐猛猛, 黄启广, 郑涛, 回天力, 刘海燕, 张睿, 孟祥海, 刘植昌. 氯铝酸离子液体催化萘沥青的液液萃取制备[J]. 化工进展, 2025, 44(12): 7065-7074.
XU Mengmeng, HUANG Qiguang, ZHENG Tao, HUI Tianli, LIU Haiyan, ZHANG Rui, MENG Xianghai, LIU Zhichang. Preparation of naphthalene pitch through liquid-liquid extraction from chloroaluminate ionic liquids[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7065-7074.
| 项目 | 溶剂名称 | 溶解情况 | |
|---|---|---|---|
| 离子液体① | 萘沥青② | ||
| 1 | 吡啶 | 反应 | 溶解 |
| 2 | 喹啉 | 反应 | 溶解 |
| 3 | 二甲基甲酰胺 | 反应 | 溶解 |
| 4 | 三乙胺 | 反应 | 溶解 |
| 5 | N-甲基吡咯烷酮 | 反应 | 溶解 |
| 6 | 正辛烷 | 不溶 | 微溶 |
| 7 | 异辛烷 | 不溶 | 微溶 |
| 8 | 正庚烷 | 不溶 | 微溶 |
| 9 | 正戊烷 | 不溶 | 微溶 |
| 10 | 异戊烷 | 不溶 | 微溶 |
| 11 | 石油醚 | 不溶 | 微溶 |
| 12 | 十一烷 | 不溶 | 微溶 |
| 13 | 苯 | 微溶 | 易溶 |
| 14 | 甲苯 | 微溶 | 易溶 |
| 15 | 二甲苯 | 微溶 | 易溶 |
| 16 | 对二甲苯 | 微溶 | 易溶 |
表1 不同溶剂对氯铝酸离子液体和萘沥青的溶解性能
| 项目 | 溶剂名称 | 溶解情况 | |
|---|---|---|---|
| 离子液体① | 萘沥青② | ||
| 1 | 吡啶 | 反应 | 溶解 |
| 2 | 喹啉 | 反应 | 溶解 |
| 3 | 二甲基甲酰胺 | 反应 | 溶解 |
| 4 | 三乙胺 | 反应 | 溶解 |
| 5 | N-甲基吡咯烷酮 | 反应 | 溶解 |
| 6 | 正辛烷 | 不溶 | 微溶 |
| 7 | 异辛烷 | 不溶 | 微溶 |
| 8 | 正庚烷 | 不溶 | 微溶 |
| 9 | 正戊烷 | 不溶 | 微溶 |
| 10 | 异戊烷 | 不溶 | 微溶 |
| 11 | 石油醚 | 不溶 | 微溶 |
| 12 | 十一烷 | 不溶 | 微溶 |
| 13 | 苯 | 微溶 | 易溶 |
| 14 | 甲苯 | 微溶 | 易溶 |
| 15 | 二甲苯 | 微溶 | 易溶 |
| 16 | 对二甲苯 | 微溶 | 易溶 |
| 萘沥青 | 收率①/% | TS②/% | 氢碳原子比 | 软化点③/℃ | 灰分含量④/% |
|---|---|---|---|---|---|
| NP-1 | 50% | 100 | 0.712 | 35 | 0.0020 |
| NP-2 | 35% | 100 | 0.708 | 30 | 0.0016 |
表2 两种萘沥青的基本性能参数对比
| 萘沥青 | 收率①/% | TS②/% | 氢碳原子比 | 软化点③/℃ | 灰分含量④/% |
|---|---|---|---|---|---|
| NP-1 | 50% | 100 | 0.712 | 35 | 0.0020 |
| NP-2 | 35% | 100 | 0.708 | 30 | 0.0016 |
| 中间相沥青 | 收率①/% | 溶解度②/% | 氢碳原子比 | 软化点③/℃ | 各向异性含量④/% | ||
|---|---|---|---|---|---|---|---|
| BS | BS-PS | PI | |||||
| MP-1 | 38 | 27 | 18 | 55 | 0.51 | 315 | 98 |
| MP-2 | 30 | 31 | 21 | 48 | 0.49 | 310 | 99 |
表3 两种中间相沥青的基本性能参数对比
| 中间相沥青 | 收率①/% | 溶解度②/% | 氢碳原子比 | 软化点③/℃ | 各向异性含量④/% | ||
|---|---|---|---|---|---|---|---|
| BS | BS-PS | PI | |||||
| MP-1 | 38 | 27 | 18 | 55 | 0.51 | 315 | 98 |
| MP-2 | 30 | 31 | 21 | 48 | 0.49 | 310 | 99 |
| [1] | LIU Heguang, YANG Yujia, TIAN Na, et al. Foam-structured carbon materials and composites for electromagnetic interference shielding: Design principles and structural evolution[J]. Carbon, 2024, 217: 118608. |
| [2] | ZHANG Ningyuan, HUANG Dong, CHEN Xiang, et al. Improving the interlaminar bonding and thermal conductivity of polymer composites by using split-radial mesophase pitch-based carbon fiber as reinforcement[J]. Composites Part B: Engineering, 2023, 252: 110509. |
| [3] | ESWARAPPA PRAMEELA Suhas, POLLOCK Tresa M, RAABE Dierk, et al. Materials for extreme environments[J]. Nature Reviews Materials, 2022, 8(2): 81-88. |
| [4] | CHENG Youliang, YANG Lu, LUO Tao, et al. Preparation and characterization of mesophase pitch via co-carbonization of waste polyethylene/petroleum pitch[J]. Journal of Materials Science & Technology, 2015, 31(8): 857-863. |
| [5] | 马子辉, 杨桃, 宋燕, 等. 催化法制备中间相沥青的研究进展[J]. 新型炭材料(中英文), 2024, 39: 1-28. |
| MA Zihui, YANG Tao, SONG Yan, et al. A review of the catalytic preparation of mesophase pitch[J]. New Carbon Materials (Chinese & English), 2024, 39: 1-28. | |
| [6] | 高海港, 安高军, 鲁长波, 等. 可纺中间相沥青的研究进展[J]. 化工进展, 2024, 43(2): 1001-1012. |
| GAO Haigang, AN Gaojun, LU Changbo, et al. Research progress on spinnable mesophase pitch[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1001-1012. | |
| [7] | BROOKS J D, TAYLOR G H. The formation of graphitizing carbons from the liquid phase[J]. Carbon, 1965, 3(2): 185-193. |
| [8] | KORAI Yozo, YOON Seong-Ho, Hidetoshi OKA, et al. The properties of co-oligomerized mesophase pitch from methylnaphthalene and naphthalene catalyzed by HF/BF3 [J]. Carbon, 1998, 36(4): 369-375. |
| [9] | ZHANG Xingwei, MENG Yuchen, FAN Baolin, et al. Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent[J]. Fuel, 2019, 243: 390-397. |
| [10] | THOMPSON Christina, FRANK George, EDWARDS Vivian, et al. Mesophase pitch-based high performance carbon fiber production using coal extracts from mild direct coal liquefaction[J]. Carbon, 2024, 226: 119212. |
| [11] | ZHANG Xingwei, MA Zhaokun, HE Yan, et al. Correlation between properties of coal-based mesophase pitch with sea-island texture prepared by hydrogenation and graphite fibers[J]. Carbon, 2024, 216: 118510. |
| [12] | ZHANG Zhichen, WANG Zenghao, ZHANG Lanjie, et al. Study on the co-carbonization behavior of high-temperature coal tar pitch and raffinate oil of low-temperature coal tar[J]. Fuel, 2022, 310: 122469. |
| [13] | QI Mengyao, HUANG Sheng, WU Shiyong, et al. Effective preparation of mesophase by segmented hydrogenation/thermal polycondensation of coal liquefied pitch[J]. Fuel, 2022, 324: 124685. |
| [14] | TOMARU Taisei, SHIMANOE Hiroki, HONG Seonghwa, et al. Preparation of spinnable mesophase pitch from pyrolyzed fuel oil by pressurized heat treatment and its application of carbon fiber[J]. Carbon, 2024, 226: 119160. |
| [15] | LIAO Gen, SHI Kui, YE Chong, et al. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 105997. |
| [16] | CHEN Pengcheng, METZ Jordan N, MENNITO Anthony S, et al. Petroleum pitch: Exploring a 50-year structure puzzle with real-space molecular imaging[J]. Carbon, 2020, 161: 456-465. |
| [17] | CHEN Pengcheng, METZ Jordan N, GROSS Adam S, et al. Ex situ and in situ thermal transformations of M-50 pitch revealed by non-contact atomic force microscopy[J]. Energy & Fuels, 2021, 35(22): 18210-18219. |
| [18] | GUO Jianguang, ZHU Hui, XU Huitao, et al. Spinnable mesophase pitch prepared via co-carbonization of fluid catalytic cracking decant oil and synthetic naphthalene pitch[J]. Energy & Fuels, 2020, 34(2): 2566-2573. |
| [19] | GARGIULO Valentina, APICELLA Barbara, Michela ALFÈ, et al. Structural characterization of large polycyclic aromatic hydrocarbons. Part 1: The case of coal tar pitch and naphthalene-derived pitch[J]. Energy & Fuels, 2015, 29(9): 5714-5722. |
| [20] | MOCHIDA Isao, NAKAMURA Eiichi, MAEDA Keiko, et al. Carbonization of aromatic hydrocarbons—Ⅴ: Microscopic features of carbons obtained by the aid of catalysts[J]. Carbon, 1976, 14(6): 341-344. |
| [21] | MOCHIDA Isao, KUDO Keiko, FUKUDA Noriyoshi, et al. Carbonization of pitches—Ⅳ: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon, 1975, 13(2): 135-139. |
| [22] | 刘犇, 赵红超, 李香粉, 等. 中间相沥青脱除灰分[J]. 新型炭材料, 2016, 31(4): 455-458. |
| LIU Ben, ZHAO Hongchao, LI Xiangfen, et al. De-ashing of naphthalene-based mesophase pitch synthesized by the AlCl3-catalyzed method[J]. New Carbon Materials, 2016, 31(4): 455-458. | |
| [23] | MOCHIDA Isao, SHIMIZU Kiyoyuki, KORAI Yozo, et al. Structure and carbonization properties of pitches produced catalytically from aromatic hydrocarbons with HF BF3 [J]. Carbon, 1988, 26(6): 843-852. |
| [24] | MOCHIDA Isao, SHIMIZU Kiyoyuki, KORAI Yozo, et al. Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3 [J]. Carbon, 1990, 28 (2/3): 311-319. |
| [25] | 张霞, 钟炳, 刘朗, 等. 固体超强酸SO4 2-/TiO2对萘齐聚反应的催化作用[J]. 燃料化学学报, 1997, 25(2): 71-74. |
| ZHANG Xia, ZHONG Bing, LIU Lang, et al. The catalytic effect of solid superacid SO4 2-/TiO2 on the naphthalene oligomerization reaction[J]. Journal of Fuel Chemistry and Technology, 1997, 25(2): 71-74. | |
| [26] | 胡子君, 吕春祥, 凌立成, 等. 经ZrO2/SO4 2-催化所得萘齐聚物的中间相转化行为[J]. 燃料化学学报, 1997, 25(6): 554-559. |
| HU Zijun, Chunxiang LYU, LING Licheng, et al. Studies on mesophase transformation behavior of naphthalene oligomers prepared using ZrO2/SO4 2- catalyst[J]. Journal of Fuel Chemistry and Technology, 1997, 25(6): 554-559. | |
| [27] | ZHANG Ruina, CUI Guokai, WANG Xiuqin, et al. Ionic liquid-based advanced porous organic hyper-crosslinked polymers (ILHCPs) for CO2 capture and conversion[J]. Chemical Engineering Journal, 2024, 489: 151102. |
| [28] | YU Gangqiang, DAI Chengna, LIU Ning, et al. Hydrocarbon extraction with ionic liquids[J]. Chemical Reviews, 2024, 124(6): 3331-3391. |
| [29] | BACA Kalin R, Karim AL-BARGHOUTI, WANG Ning, et al. Ionic liquids for the separation of fluorocarbon refrigerant mixtures[J]. Chemical Reviews, 2024, 124(9): 5167-5226. |
| [30] | SHAMSHIAN Julia L, ROGERS Robin D. Ionic liquids: New forms of active pharmaceutical ingredients with unique, tunable properties[J]. Chemical Reviews, 2023, 123(20): 11894-11953. |
| [31] | WEBER Cameron C, MASTERS Anthony F, MASCHMEYER Thomas. Structural features of ionic liquids: Consequences for material preparation and organic reactivity[J]. Green Chemistry, 2013, 15(10): 2655-2679. |
| [32] | GHOLINEJAD Mohammad, ZAREH Fatemeh, SHEIBANI Hassan, et al. Magnetic ionic liquids as catalysts in organic reactions[J]. Journal of Molecular Liquids, 2022, 367: 120395. |
| [33] | LIU Guangliang, WU Guoqing, LIU Ying, et al. Theoretical study on the C4 alkylation mechanism catalyzed by Cu-containing chloroaluminate ionic liquids[J]. Fuel, 2022, 310: 122379. |
| [34] | ELTERMAN V A, P Yu SHEVELIN, YOLSHINA L A, et al. Physicochemical characteristics of 1-ethyl- and 1-butyl-3-methylimidazolium chloroaluminate ionic liquids[J]. Journal of Molecular Liquids, 2022, 364: 120061. |
| [35] | ZHANG Bin, WANG Qi, ZHAN Haitao, et al. Gradient equivalent feeding in the acylation of 2,3-dihydrobenzofuran catalyzed by chloroaluminate ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(47): 15957-15962. |
| [36] | KORE Rajkumar, SAWANT Anand D, ROGERS Robin D. Recyclable magnetic Fe3O4 nanoparticle-supported chloroaluminate ionic liquids for heterogeneous Lewis acid catalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(26): 8797-8802. |
| [37] | ELTERMAN V A, BOROZDIN A V, DRUZHININ K V, et al. Chloroaluminate ionic liquids for low-temperature aluminum-ion batteries[J]. Journal of Molecular Liquids, 2024, 394: 123702. |
| [38] | 刘海燕, 孙家宾, 徐猛猛, 等. 基于氯铝酸离子液体催化的萘低聚物的制备方法: CN113527024B[P]. 2022-10-04. |
| LIU Haiyan, SUN Jiabin, XU Mengmeng, et al. Preparation method of naphthalene oligomer based on chloroaluminate ionic liquid catalysis: CN113527024B[P]. 2022-10-04. | |
| [39] | WU Guang, WU Wei, XIAO Linfei, et al. Selective synthesis of 2,6-dimethylnaphthalene by transalkylation in the presence of acid ionic liquids [C n mim]Cl-AlCl3 [J]. Chemical Research in Chinese Universities, 2011, 27(6): 1010-1013. |
| [40] | LI Chenmin, QI Xin, Tang Xiangyan. Synthesis of 2-isopropyl naphthalene catalyzed by Et3NHCl-AlCl3 ionic liquids[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(1): 60-65. |
| [41] | LI Lei, ZHAO Xinrui, CHEN, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
| [42] | CHEN Chen, TANG Qiong, XU Hong, et al. Alkylation of naphthalene with n-butene catalyzed by liquid coordination complexes and its lubricating properties[J]. Chinese Journal of Chemical Engineering, 2021, 39: 306-313. |
| [43] | CUI Jingze, TANG Qiong, CHEN Chen, et al. High-viscosity polyalkylphenanthrene oils: Synthesis and evaluation of lubricating properties[J]. Lubrication Science, 2022, 34(8): 527-536. |
| [44] | RUSSO Carmela, STANZIONE Fernando, TREGROSSI Antonio, et al. Infrared spectroscopy of some carbon-based materials relevant in combustion: Qualitative and quantitative analysis of hydrogen[J]. Carbon, 2014, 74: 127-138. |
| [45] | 洪海球, 邓宋, 赖仕全, 等. 萘沥青及热转化产物的性质和结构表征[J]. 化工进展, 2020, 39(7): 2724-2733. |
| HONG Haiqiu, DENG Song, LAI Shiquan, et al. Properties and structural characterization of naphthalene pitch and its thermal conversion products[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2724-2733. |
| [1] | 邹先志, 廖亚龙, 杨双宇. 铜电解液净化除杂研究进展[J]. 化工进展, 2025, 44(S1): 492-503. |
| [2] | 武锦怡, 赵睿恺, 邓帅, 张家麒, 高春霄, 刘葳桦, 赵力. 混合绝缘气体变温吸附分离回收SF6的数值模拟[J]. 化工进展, 2025, 44(S1): 19-28. |
| [3] | 郭栩豪, 叶一鸣, 齐鑫, 胡石林, 张平柱. 三氟化硼低温精馏法富集10B工艺的模拟[J]. 化工进展, 2025, 44(S1): 74-83. |
| [4] | 刘通, 乔韦军, 赵思萌, 赵志萍, 汤琼, 刘雷, 董晋湘. 离子液体催化合成长链烷基萘基础油及其摩擦学性能[J]. 化工进展, 2025, 44(9): 5277-5284. |
| [5] | 洪凯, 樊欢, 田佳, 张荥斐. 硫化沉淀法处理铜砷多金属酸性废水研究进展[J]. 化工进展, 2025, 44(9): 5301-5314. |
| [6] | 杜璇, 王战宏, 郑彬, 许卫, 王硕, 石鹏, 高国. 钴铁酸浸液分离及电池级磷酸铁回收技术进展[J]. 化工进展, 2025, 44(9): 5327-5338. |
| [7] | 王晓光, 董青, 郎文丽, 洪翔鑫, 黄振祥, 谭凤玉, 雷以柱, 余子夷. 超低浓度甲烷减排与资源化利用研究进展[J]. 化工进展, 2025, 44(9): 5363-5376. |
| [8] | 符红梅, 刘定华, 刘晓勤. MOF材料在芳烃同分异构体分离中的研究进展[J]. 化工进展, 2025, 44(9): 5006-5017. |
| [9] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [10] | 杨傲, 邓苇, 黎勇, 罗婧, 王梓霖, 张俊, 申威峰. 基于热力学拓扑理论的三塔变压精馏分离四氢呋喃/甲醇/乙醇多目标优化设计[J]. 化工进展, 2025, 44(8): 4582-4593. |
| [11] | 高岩, 李永帅, 李高洋, 潘慧, 凌昊. Agrawal分壁精馏塔的动态控制[J]. 化工进展, 2025, 44(8): 4594-4605. |
| [12] | 汪国超, 丁晖殿, 师丽, 李强, 夏涛, 苑杨. 复合精馏序列的温度推断控制[J]. 化工进展, 2025, 44(8): 4720-4731. |
| [13] | 付映雪, 雷杨, 陈毓秋, 刘芯妍. 离子液体-二氧化碳体系UNIFAC模型的构建[J]. 化工进展, 2025, 44(8): 4862-4870. |
| [14] | 唐轩, 白晓炜, 张飞飞, 李晋平, 杨江峰. 沸石分子筛用于CO2-N2-CH4筛分分离的研究进展[J]. 化工进展, 2025, 44(7): 3938-3949. |
| [15] | 陈倩, 仝坤, 谢加才, 邵志国, 聂凡, 李成涛. 含聚油泥处理技术研究进展[J]. 化工进展, 2025, 44(7): 4158-4168. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |