化工进展 ›› 2025, Vol. 44 ›› Issue (4): 1957-1967.DOI: 10.16085/j.issn.1000-6613.2024-1481

• 专栏:多相流测试 • 上一篇    下一篇

基于改进Swin Transformer的HMX造型粉图像处理方法

邹藻1,2(), 田昌1, 苏明旭1(), 尹华模2, 屈延阳2, 何冠松2()   

  1. 1.上海理工大学能源与动力工程学院,上海 200093
    2.中国工程物理研究院化工材料研究所,四川 绵阳 621900
  • 收稿日期:2024-09-09 修回日期:2024-10-22 出版日期:2025-04-25 发布日期:2025-05-07
  • 通讯作者: 苏明旭,何冠松
  • 作者简介:邹藻(2000—),女,硕士研究生,研究方向为图像处理与识别。E-mail:zzao2021@163.com
  • 基金资助:
    国家自然科学基金(52376162)

Image processing method of HMX molding powders based on improved Swin Transformer

ZOU Zao1,2(), TIAN Chang1, SU Mingxu1(), YIN Huamo2, QU Yanyang2, HE Guansong2()   

  1. 1.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • Received:2024-09-09 Revised:2024-10-22 Online:2025-04-25 Published:2025-05-07
  • Contact: SU Mingxu, HE Guansong

摘要:

针对原位、在线获取奥克托今(HMX)造型粉形貌信息的需求,设计了颗粒图像探针及采集系统,获取了造型粉悬浮颗粒图像。以掩模区域卷积神经网络(Mask RCNN)为框架,提出了一种基于改进Swin Transformer的图像处理方法,通过并联通道注意力模块和窗口自注意力机制提出CA-Swin Transformer结构以合理分配图像通道的关注度,并进一步结合特征增强模块建立了一种颗粒识别网络(particle recognition network,PRNet),有效提高了颗粒识别精度。以标注的HMX造型粉图像数据集对PRNet进行训练与测试。结果表明,PRNet的AP、AP50和AP75分别达到了62.3%、84.4%和72.5%;识别特征粒径D10D50D90Dmax与人工标注值的相对误差分别为-4.788%、-0.770%、-0.272%和0.313%,均优于基准网络Mask RCNN及其以Swin Transformer为主干网络的变体。此外,对重叠颗粒的遮挡部分进行复原,重叠颗粒圆形度、Feret直径和长宽比与人工标注绝对相对误差分别小于8%、4%和5%。

关键词: 两相流, 颗粒, 奥克托今造型粉, 原位测量, 深度学习

Abstract:

To realize online morphology information measurement of HMX molding powders, the particle imaging probe and acquisition system were developed. Experimental studies were conducted to capture the images of suspended particles of molding powders. Using Mask RCNN as framework, an image processing method based on improved Swin Transformer was proposed, and the CA-Swin Transformer structure was proposed by connecting channel attention module (CAM) and the window-based multi-head self-attention (W-MSA) in parallel, which was utilized to reasonably allocate the attention degree of image channels. The particle recognition network (PRNet) was further established by combining the proposed feature enhancement module (FEM) with CA-Swin Transformer, effectively improving the recognition accuracy of particle images. The PRNet was trained and tested with the labeled image dataset of HMX molding powders. The obtained results showed that the AP, AP50 and AP75 of PRNet reached 62.3%, 84.4% and 72.5%, respectively. The relative errors of recognized feature particle sizes D10, D50, D90 and Dmax relative to manual labeling were -4.788%, -0.770%, -0.272% and 0.313%, respectively, outperforming baseline network Mask RCNN and its variant with the Swin Transformer backbone. Moreover, PRNet exhibited a better recovery ability for the occluding part of overlapping particles. The absolute relative errors of circularity, Feret diameter and aspect ratio of overlapping particles relative to manual labeling were less than 8%, 4% and 5%, respectively.

Key words: two-phase flow, particles, Octogen (HMX) molding powders, in-situ measurement, deep learning

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn