1 |
吴丹, 周聪, 赵素英. 负载型烯烃氢甲酰化反应催化剂研究进展[J]. 化工进展, 2019, 38(10): 4542-4553.
|
|
WU Dan, ZHOU Cong, ZHAO Suying. Research progress of immobilized catalysts for olefin hydroformylation[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4542-4553.
|
2 |
ZHANG Peng, WANG Tuo, GONG Jinlong. Advances in electrochemical oxidation of olefins to epoxides[J]. CCS Chemistry, 2023, 5(5): 1028-1042.
|
3 |
刘雯静, 袁茂林, 付海燕, 等. 铑/双膦配体催化均相内烯烃氢甲酰化反应的研究进展[J]. 催化学报, 2009, 30(6): 577-586.
|
|
LIU Wenjing, YUAN Maolin, FU Haiyan, et al. Progress of rhodium/diphosphine-catalyzed homogeneous hydroformylation of internal olefins[J]. Chinese Journal of Catalysis, 2009, 30(6): 577-586.
|
4 |
王玉清, 姜淼, 吴刚强, 等. Co基催化剂在氢甲酰化反应中的应用研究进展[J]. 低碳化学与化工, 2023, 48(2): 52-61.
|
|
WANG Yuqing, JIANG Miao, WU Gangqiang, et al. Research progress on application of Co-based catalysts in hydroformylation reaction[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 52-61.
|
5 |
JOLA Pospech, IVANA Fleischer, ROBERT Franke, et al. Alternative metals for homogeneous catalyzed hydroformylation reactions[J]. Angewandte Chemie (International Ed in English), 2013, 52(10): 2852-2872.
|
6 |
LIU Boyang, WANG Yu, HUANG Ning, et al. Heterogeneous hydroformylation of alkenes by Rh-based catalysts[J]. Chem, 2022, 8(10): 2630-2658.
|
7 |
潘茵茵, 宋广杰, 薛宽荣, 等. 非合成气法烯烃、炔烃氢甲酰化研究进展[J]. 分子催化, 2021, 35(2): 166-177.
|
|
PAN Yinyin, SONG Guangjie, XUE Kuanrong, et al. The development of hydroformylation of alkenes and alkynes with syngas substitutes[J]. Journal of Molecular Catalysis (China), 2021, 35(2): 166-177.
|
8 |
OTSUKA Kiyoshi, ANDO Ten, YAMANAKA Ichiro. Hydroformylation of ethylene via spontaneous cell reactions in the gas phase[J]. Journal of Catalysis, 1997, 165(2): 221-230.
|
9 |
ZENG Joy S, COSNER Emma L, DELGADO-KUKUCZKA Spencer P, et al. Electrifying hydroformylation catalysts exposes voltage-driven C—C bond formation[J]. Journal of the American Chemical Society, 2024, 146(24): 16521-16530.
|
10 |
LUO Xu, TAN Xin, JI Pengxia, et al. Surface reconstruction-derived heterostructures for electrochemical water splitting[J]. EnergyChem, 2023, 5: 100091.
|
11 |
黄澎, 邹颖, 王宝焕, 等. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775.
|
|
HUANG Peng, ZOU Ying, WANG Baohuan, et al. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775.
|
12 |
PEDERSEN Samuel K, GUDMUNDSSON Haraldur G, NIELSEN Dennis U, et al. Main element chemistry enables gas-cylinder-free hydroformylations[J]. Nature Catalysis, 2020, 3: 843-850.
|
13 |
邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151.
|
|
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151.
|