化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6780-6793.DOI: 10.16085/j.issn.1000-6613.2023-2181
• 材料科学与技术 • 上一篇
收稿日期:
2023-12-12
修回日期:
2024-03-08
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
嵇海宁,刘东青
作者简介:
陶俊东(1999—),男,硕士研究生,研究方向为光电功能材料与器件。E-mail:JundongTao_314@163.com。
基金资助:
TAO Jundong1(), JI Haining1(
), LIU Dongqing2(
)
Received:
2023-12-12
Revised:
2024-03-08
Online:
2024-12-15
Published:
2025-01-11
Contact:
JI Haining, LIU Dongqing
摘要:
自适应伪装是一种综合材料科学、传感技术和控制工程等多领域知识的前沿技术。该技术可以根据周围背景环境变化实时调整被侦测目标,使目标在一定光谱范围内(如可见光和红外光)的光学特征与背景保持一致或接近,从而有效地降低目标被探测概率。近年来已发展出一系列基于不同控制方式的光学调控器件和系统,其均在自适应伪装领域发挥出重要作用。本文从四个方面综述了可见光和红外自适应伪装技术研究进展,包括光驱动自适应伪装、热驱动自适应伪装、电驱动自适应伪装和智能集成系统驱动自适应伪装,并阐述了各类自适应伪装技术的调控原理及其实现方式。探讨了自适应伪装技术的未来发展趋势,指出目前该技术仍处于实验阶段,实际环境中性能不太稳定,难以应对复杂的背景信息,通过伪装材料的研发和复杂背景信息处理系统的建立,可以为自适应伪装技术迈向智能化和多样化发展奠定基础。
中图分类号:
陶俊东, 嵇海宁, 刘东青. 可见光和红外自适应伪装技术研究进展[J]. 化工进展, 2024, 43(12): 6780-6793.
TAO Jundong, JI Haining, LIU Dongqing. Research progress of visible and infrared adaptive camouflage technology[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6780-6793.
1 | SMAGH Nishawn. Intelligence, surveillance, and reconnaissance design for great power competition[J]. Congressional Research Service, 2020, 46389. |
2 | BRENNER A R, ENDER J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proceedings — Radar, Sonar and Navigation, 2006, 153(2): 152. |
3 | Todd HOLLAND K, LALEJINI David M, SPANSEL Steven D, et al. Littoral environmental reconnaissance using tactical imagery from unmanned aircraft systems[C]//Ocean Sensing and Monitoring. Orlando, Florida: SPIE, 2010: 39-46. |
4 | SCHWARZ Alexander. Adaptive camouflage in the VIS and IR spectral range: Main principles and mechanisms[C]//Target and Background Signatures. Toulouse, France: SPIE, 2015: 52-61. |
5 | 李广德, 刘东青, 王义, 等. 热红外伪装技术的研究现状与进展[J]. 红外技术, 2019, 41(6): 495-503. |
LI Guangde, LIU Dongqing, WANG Yi, et al. Research status and progress of the thermal infrared camouflage technology[J]. Infrared Technology, 2019, 41(6): 495-503. | |
6 | 王义, 刘东青, 周峰, 等. 自适应伪装材料与技术研究进展[J]. 中国材料进展, 2020, 39(5): 404-410. |
WANG Yi, LIU Dongqing, ZHOU Feng, et al. Research progress of adaptive camouflage materials and technology[J]. Materials China, 2020, 39(5): 404-410. | |
7 | MERILAITA Sami, SCOTT-SAMUEL Nicholas E, CUTHILL Innes C. How camouflage works[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1724): 20160341. |
8 | LI Mingyang, LIU Dongqing, CHENG Haifeng, et al. Manipulating metals for adaptive thermal camouflage[J]. Science Advances, 2020, 6(22): eaba3494. |
9 | CHANDRA Sayan, FRANKLIN Daniel, COZART Jared, et al. Adaptive multispectral infrared camouflage[J]. ACS Photonics, 2018, 5(11): 4513-4519. |
10 | HANLON Roger T, CHIAO Chuan-Chin C, MÄTHGER Lydia M, et al. Rapid adaptive camouflage in cephalopods[M]//Animal Camouflage. Cambridge: Cambridge University Press, 2011: 145-163. |
11 | QIAO Yu, MENG Zihui, WANG Piaopiao, et al. Research progress of bionic adaptive camouflage materials[J]. Frontiers in Materials, 2021, 8: 637664. |
12 | IRIE Masahiro. New frontiers in photochromism[M]. SEKI Takahiro, YOKOYAMA Yasushi. Tokyo: Springer, 2013. |
13 | Martina ŠTAFFOVÁ, František KUČERA, Jiří TOCHÁČEK, et al. Insight into color change of reversible thermochromic systems and their incorporation into textile coating[J]. Journal of Applied Polymer Science, 2021, 138(4): e49724. |
14 | ABOU ELMAATY Tarek M, ABDELDAYEM Shereen A, ELSHAFAI Nashwa. Simultaneous thermochromic pigment printing and Se-NP multifunctional finishing of cotton fabrics for smart childrenswear[J]. Clothing and Textiles Research Journal, 2020, 38(3): 182-195. |
15 | ARULPRAKASAJOTHI M, SUSANTH B, NAVEEN KUMAR K, et al. Thermal management on external surfaces by thermochromic materials[J]. Materials Today: Proceedings, 2021, 47: 4666-4670. |
16 | ZHANG Xiang, LI Wenjie, CHEN Xi, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green[J]. Chemical Communications, 2020, 56(69): 10062-10065. |
17 | KOYUNCU Sermet, KOYUNCU Fatma Baycan. A new ITO-compatible side chain-functionalized multielectrochromic polymer for use in adaptive camouflage-like electrochromic devices[J]. Reactive and Functional Polymers, 2018, 131: 174-180. |
18 | FU Haichang, ZHANG Ling, DONG Yujie, et al. Recent advances in electrochromic materials and devices for camouflage applications[J]. Materials Chemistry Frontiers, 2023, 7(12): 2337-2358. |
19 | BELL Lon E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461. |
20 | HOCHBAUM Allon I, CHEN Renkun, DELGADO Raul Diaz, et al. Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature, 2008, 451(7175): 163-167. |
21 | POUDEL Bed, HAO Qing, MA Yi, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638. |
22 | DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8): 1043-1053. |
23 | QU Yurui, LI Qiang, CAI Lu, et al. Thermal camouflage based on the phase-changing material GST[J]. Light: Science & Applications, 2018, 7(1): 26. |
24 | KANG Qianlong, LI Dekui, GUO Kai, et al. Tunable thermal camouflage based on GST plasmonic metamaterial[J]. Nanomaterials, 2021, 11(2): 260. |
25 | DEMIRYONT Hulya, MOOREHEAD David. Electrochromic emissivity modulator for spacecraft thermal management[J]. Solar Energy Materials and Solar Cells, 2009, 93(12): 2075-2078. |
26 | MANDAL Jyotirmoy, DU Sicen, DONTIGNY Martin, et al. Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials, 2018, 28(36): 1802180. |
27 | JIANG Xinpeng, WANG Xinfei, NONG Jie, et al. Bicolor regulation of an ultrathin absorber in the mid-wave infrared and long-wave infrared regimes[J]. ACS Photonics, 2024, 11(1): 218-229. |
28 | KUMAR C, PATEL N. Mid wave infrared and long wave infrared QCLs and their applications to sensors[C]//Optical Sensors. Optical Chemical and Biological Sensors Ⅱ. Puerto Rico, United States: Optica Publishing Group, 2013: SW2B. 2. |
29 | LIU Kai, LEE Sangwook, YANG Shan, et al. Recent progresses on physics and applications of vanadium dioxide[J]. Materials Today, 2018, 21(8): 875-896. |
30 | WANG Shancheng, JIANG Tengyao, MENG Yun, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504. |
31 | COPPENS Zachary J, VALENTINE Jason G. Spatial and temporal modulation of thermal emission[J]. Advanced Materials, 2017, 29(39): 1701275. |
32 | YANG Jiajia, ZHANG Xinfang, ZHANG Xuan, et al. Beyond the visible: Bioinspired infrared adaptive materials[J]. Advanced Materials, 2021, 33(14): 2004754. |
33 | ZHEN Liying, ZHAO Yan, ZHANG Pin, et al. Implementation of adaptive real-time camouflage system in visible-light band[J]. Applied Sciences, 2021, 11(15): 6706. |
34 | MA Tianjiao, BAI Jing, LI Tiantian, et al. Light-driven dynamic surface wrinkles for adaptive visible camouflage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(48): e2114345118. |
35 | LIU Huidong, WANG Chenyi, CHEN Guorui, et al. Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage[J]. Nano Energy, 2022, 93: 106855. |
36 | LING Zhongwen, LIU Kang, ZOU Qi, et al. Continuous and rapid fabrication of photochromic fibers by facilely coating tungsten oxide/polyvinyl alcohol composites[J]. RSC Advances, 2018, 8(50): 28581-28587. |
37 | Jeonghyeon HEO, KIM Young Been, KIM Dae Seok. Versatile camouflage coating of photochromic pigments[J]. Molecular Crystals and Liquid Crystals, 2022, 739(1): 104-110. |
38 | HUANG Yinliang, BISOYI Hari Krishna, HUANG Shuai, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators[J]. Angewandte Chemie International Edition, 2021, 60(20): 11247-11251. |
39 | I Yu MARTYNOV, SAVELIEV M A, VENIDIKTOVA O V, et al. Photochromic systems with dynamic adaptive photobleaching[J]. Russian Journal of General Chemistry, 2018, 88(12): 2787-2792. |
40 | ZHENG Yue, PANATDASIRISUK Weerapha, LIU Jiaqi, et al. Patterned, wearable UV indicators from electrospun photochromic fibers and yarns[J]. Advanced Materials Technologies, 2020, 5(11): 2000564. |
41 | KIM Young-Been, HAN Woong-Chan, Jeonghyeon HEO, et al. Camouflage coating using photochromic microcapsules and epoxy resin[J]. Polymer Korea, 2022, 46(2): 288-294. |
42 | XU Ziquan, LUO Hao, ZHU Huanzheng, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 2021, 21(12): 5269-5276. |
43 | MIAO Jianyin, ZHONG Qi, ZHAO Qiwei, et al. Spacecraft thermal control technologies[M]. Singapore: Springer, 2021. |
44 | JOOST Urmas, Andris ŠUTKA, Marek OJA, et al. Reversible photodoping of TiO2 nanoparticles for photochromic applications[J]. Chemistry of Materials, 2018, 30(24): 8968-8974. |
45 | LEITIS Aleksandrs, Andreas HEßLER, WAHL Sophia, et al. All-dielectric programmable Huygens’ metasurfaces[J]. Advanced Functional Materials, 2020, 30(19): 1910259. |
46 | KIM Chanhee, KIM Yeongseon, LEE Myeongkyu. Laser-induced tuning and spatial control of the emissivity of phase-changing Ge2Sb2Te5 emitter for thermal camouflage[J]. Advanced Materials Technologies, 2022, 7(8): 2101349. |
47 | Louis MARTIN-MONIER, POPESCU Cosmin Constantin, RANNO Luigi, et al. Endurance of chalcogenide optical phase change materials: A review[J]. Optical Materials Express, 2022, 12(6): 2145-2167. |
48 | KANG Dongkyun, KIM Yeongseon, KIM Chanhee, et al. Highly flexible infrared emitter with spatially controlled emissivity for optical security[J]. Advanced Materials Technologies, 2023, 8(4): 2200808. |
49 | KANG Dongkyun, KIM Yeongseon, LEE Myeongkyu. Laser dynamic control of the thermal emissivity of a planar cavity structure based on a phase-change material[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4925-4933. |
50 | HOSSAIN Md Anowar. Adaptive camouflage textiles with thermochromic colorant and liquid crystal for multidimensional combat background, a technical approach for advancement in defence protection[J]. American Journal of Materials Engineering and Technology, 2021, 9(1): 31-47. |
51 | KARPAGAM K R, SARANYA K S, GOPINATHAN J, et al. Development of smart clothing for military applications using thermochromic colorants[J]. The Journal of The Textile Institute, 2017, 108(7): 1122-1127. |
52 | LOU H, LIU Q, CHEN A. Development of camouflage fabric based on continuous thermochromic and electrothermal material[J]. The Journal of the Textile Institute, 2024, 115(8): 1350-1361. |
53 | Martina VIKOVÁ, Marcela PECHOVÁ. Study of adaptive thermochromic camouflage for combat uniform[J]. Textile Research Journal, 2020, 90(17/18): 2070-2084. |
54 | WU Tonghao, YIN Tenghao, HU Xiaocheng, et al. A thermochromic hydrogel for camouflage and soft display[J]. Advanced Optical Materials, 2020, 8(9): 2000031. |
55 | 嵇海宁, 刘东青, 程海峰, 等. 二氧化钒热致相变材料的制备及研究进展[J]. 兵器材料科学与工程, 2016, 39(6): 111-118. |
JI Haining, LIU Dongqing, CHENG Haifeng, et al. Preparation and research progress of vanadium dioxide thermochromic material[J]. Ordnance Material Science and Engineering, 2016, 39(6): 111-118. | |
56 | BARAKO Michael T, HOWES Austin, SWEATLOCK Luke A, et al. Evaluating variable-emissivity surfaces for radiative thermal control[J]. Journal of Thermophysics and Heat Transfer, 2022, 36(4): 1003-1014. |
57 | 嵇海宁, 刘东青, 张朝阳, 等. 二氧化钒在红外伪装隐身技术中的应用研究进展[J]. 化工进展, 2017, 36(11): 4099-4105. |
JI Haining, LIU Dongqing, ZHANG Chaoyang, et al. Application advances of vanadium dioxide in infrared camouflage and stealth technology[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4099-4105. | |
58 | WANG Yi, JI Haining, CHEN Yongxing, et al. Artificially adjustable radiative cooling device with environmental adaptability[J]. Ceramics International, 2023, 49(24): 40297-40304. |
59 | JI Haining, LIU Dongqing, CHENG Haifeng. Infrared optical modulation characteristics of W-doped VO2(M) nanoparticles in the MWIR and LWIR regions[J]. Materials Science in Semiconductor Processing, 2020, 119: 105141. |
60 | JI Haining, LIU Dongqing, CHENG Haifeng, et al. Inkjet printing of vanadium dioxide nanoparticles for smart windows[J]. Journal of Materials Chemistry C, 2018, 6(10): 2424-2429. |
61 | JI Haining, ZHAO Yong, LU Mingying, et al. Novel warm/cool-tone switchable VO2 - based smart window composite films with excellent optical performance[J]. Ceramics International, 2023, 49(13): 22630-22635. |
62 | GU Jinxin, WEI Hang, REN Feifei, et al. VO2-based infrared radiation regulator with excellent dynamic thermal management performance[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2683-2690. |
63 | LIU Dongqing, JI Haining, PENG Renfu, et al. Infrared chameleon-like behavior from VO2(M) thin films prepared by transformation of metastable VO2(B) for adaptive camouflage in both thermal atmospheric windows[J]. Solar Energy Materials and Solar Cells, 2018, 185: 210-217. |
64 | SHEN Xing Mei, DONG Ya Dong, WANG Jian, et al. Infrared Emissivity of La0.8Sr0.2MnO3 under 0.76—2.5μm and 2.5—500μm radiation fields[J]. Materials Science Forum, 2020, 984: 110-115. |
65 | YAN Fuxue, JIAO Tejing, HE Xiao, et al. Synthesis and characterization of patterned La2/3Sr1/3MnO3 epitaxial thin films via the ultraviolet-visible spectrum assisted photosensitive sol-gel method[J]. Thin Solid Films, 2020, 698: 137872. |
66 | SHEN Yong jun, WANG Chuan bin, LI Ling, et al. Effect of Sr doping on structure and emittance of La1- x Sr x MnO3 smart thermal control films[J]. Key Engineering Materials, 2014, 602/603: 902-905. |
67 | JI Haining, LIU Dongqing, CHENG Haifeng, et al. Vanadium dioxide nanopowders with tunable emissivity for adaptive infrared camouflage in both thermal atmospheric windows[J]. Solar Energy Materials and Solar Cells, 2018, 175: 96-101. |
68 | TANG Kechao, DONG Kaichen, LI Jiachen, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 2021, 374(6574): 1504-1509. |
69 | MONTAMBAUX Gilles. Generalized stefan-boltzmann law[J]. Foundations of Physics, 2018, 48(4): 395-410. |
70 | GHASEMKHANI Amir, FARAHAT Said, MAHDI NASERIAN Mohammad. Finite time analysis of endoreversible combined cycle based on the stefan-boltzmann heat transfer law[J]. Journal of Chemical, Environmental and Biological Engineering, 2020, 4(1): 25. |
71 | GIDDINGS Steven B. Hawking radiation, the Stefan-Boltzmann law, and unitarization[J]. Physics Letters B, 2016, 754: 39-42. |
72 | ZHOU Xi, XIN Binjie, LIU Yan. Research progress on infrared stealth fabric[J]. Journal of Physics: Conference Series, 2021, 1790(1): 012058. |
73 | 王新飞, 刘东青, 彭亮, 等. 光谱选择性辐射红外隐身材料研究进展[J]. 航空材料学报, 2021, 41(5): 1-13. |
WANG Xinfei, LIU Dongqing, PENG Liang, et al. Research progress on spectrally selective radiation infrared stealth materials[J]. Journal of Aeronautical Materials, 2021, 41(5): 1-13. | |
74 | 杨力祥, 程海峰, 张朝阳, 等. 红外隐身涂料粘结剂的研究进展[J]. 材料保护, 2016, 49(S1): 112-116. |
YANG Lixiang, CHENG Haifeng, ZHANG Chaoyang, et al. Research progress of infrared stealth coating binder[J]. Materials Protection, 2016, 49(S1): 112-116. | |
75 | SOMANI Prakash R, RADHAKRISHNAN S. Electrochromic materials and devices: Present and future[J]. Materials Chemistry and Physics, 2003, 77(1): 117-133. |
76 | 贾岩, 刘东青, 程海峰, 等. 基于金属氧化物纳米晶的电致变色材料研究进展[J]. 复合材料学报, 2023, 40(9): 4863-4879. |
JIA Yan, LIU Dongqing, CHENG Haifeng, et al. A review of electrochromic materials based on metal oxide nanocrystals[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4863-4879. | |
77 | ZHANG Wu, LI Haizeng, YU William W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices[J]. Light: Science & Applications, 2020, 9(1): 121. |
78 | SONG Shaoxin, LIU Yang, LIU Xuejuan, et al. Color brightness modulation of a responsive photonic liquid for multicolored electrochromic displays[J]. Journal of Materials Chemistry C, 2022, 10(8): 3114-3120. |
79 | LIANG Yi, CAO Sheng, WEI Qilin, et al. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows[J]. Nano-Micro Letters, 2021, 13(1): 196. |
80 | YIN Lu, CAO Mengzhu, KIM Kyeong Nam, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display[J]. Nature Electronics, 2022, 5(10): 694-705. |
81 | YU Hongtao, QI Maowei, WANG Jianing, et al. A feasible strategy for the fabrication of camouflage electrochromic fabric and unconventional devices[J]. Electrochemistry Communications, 2019, 102: 31-36. |
82 | CHEN Jian, SONG Ge, CONG Shan, et al. Resonant-cavity-enhanced electrochromic materials and devices[J]. Advanced Materials, 2023, 35(47): e2300179. |
83 | ZHANG Wu, LI Haizeng, ELEZZABI Abdulhakem Y. Electrochromic displays having two-dimensional CIE color space tunability[J]. Advanced Functional Materials, 2022, 32(7): 2108341. |
84 | FAN Hongwei, LI Kerui, LIU Xuelong, et al. Continuously processed, long electrochromic fibers with multi-environmental stability[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28451-28460. |
85 | DAIMON Shunsuke, IGUCHI Ryo, HIOKI Tomosato, et al. Thermal imaging of spin Peltier effect[J]. Nature Communications, 2016, 7(1): 13754. |
86 | Johan MARDINI-BOVEA, TORRES Gabriel Agenor, Emiro DE-LA-HOZ-FRANCO, et al. A review to refrigeration with thermoelectric energy based on the Peltier effect[J]. DYNA, 2019, 86(208): 9-18. |
87 | ZHANG Xiao, ZHAO Lidong. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92-105. |
88 | HU Run, XI Wang, LIU Yida, et al. Thermal camouflaging metamaterials[J]. Materials Today, 2021, 45: 120-141. |
89 | VLASOVA Marina, MÁRQUEZ AGUILAR Pedro Antonio, HERNÁNDEZ MORELOS Jorge Luis, et al. Obtaining electroheating elements based on products of carbothermal reduction of Fe2O3 by waste activated sludge (WAS)[J]. Waste and Biomass Valorization, 2023, 14(4): 1319-1332. |
90 | XIAO Lin, MA He, LIU Junku, et al. Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films[J]. Nano Letters, 2015, 15(12): 8365-8370. |
91 | ZHU Huanzheng, LI Qiang, ZHENG Chunqi, et al. High-temperature infrared camouflage with efficient thermal management[J]. Light: Science & Applications, 2020, 9(1): 60. |
92 | HONG Sahngki, SHIN Sunmi, CHEN Renkun. An adaptive and wearable thermal camouflage device[J]. Advanced Functional Materials, 2020, 30(11): 1909788. |
93 | 刘田文, 刘东青, 程海峰. 基于可逆金属电沉积的光谱调控器件研究进展[J]. 材料工程, 2023, 51(8): 67-76. |
LIU Tianwen, LIU Dongqing, CHENG Haifeng. Research progress in spectrum regulation devices based on reversible metal electrodeposition[J]. Journal of Materials Engineering, 2023, 51(8): 67-76. | |
94 | CUI Guang, PENG Zhe, CHEN Xiaoyan, et al. Freestanding graphene fabric film for flexible infrared camouflage[J]. Advanced Science, 2022, 9(5): e2105004. |
95 | ROGALSKI Antoni. Infrared detectors: Status and trends[J]. Progress in quantum electronics, 2003, 27(2/3): 59-210. |
96 | BERGERON Bryan V, WHITE Kevin C, BOEHME Jeffrey L, et al. Variable absorptance and emittance devices for thermal control[J]. The Journal of Physical Chemistry C, 2008, 112(3): 832-838. |
97 | HUANG Yinsong, ZHANG Yuzhi, ZENG Xianting, et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics[J]. Applied Surface Science, 2002, 202(1/2): 104-109. |
98 | JOSHI Yug, SAKSENA Aparna, HADJIXENOPHONTOS Efi, et al. Electrochromic behavior and phase transformation in Li4+ x Ti5O12 upon lithium-ion deintercalation/intercalation[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10616-10625. |
99 | TAO Xin, LIU Dongqing, LIU Tianwen, et al. A bistable variable infrared emissivity device based on reversible silver electrodeposition[J]. Advanced Functional Materials, 2022, 32(32): 2202661. |
100 | ENGELEN W J, VAN DER HEIJDEN M A, BAKKER D J, et al. High-coherence electron bunches produced by femtosecond photoionization[J]. Nature Communications, 2013, 4(1): 1693. |
101 | LIU Ming, YIN Xiaobo, Erick ULIN-AVILA, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67. |
102 | HOURQUEBIE P. Infrared switching electroemissive devices based on highly conducting polymers[J]. Thin Solid Films, 1999, 352(1/2): 243-248. |
103 | MEISEL Thomas, BRAUN Ruediger. Large-scale electrochromic devices for smart windows and absorbers[C]//Optical Materials Technology for Energy Efficiency and Solar Energy Conversion Ⅺ: Chromogenics for Smart Windows. Toulouse-Labege, France: SPIE, 1992, 1728: 200-210. |
104 | SALIHOGLU Omer, UZLU Hasan Burkay, YAKAR Ozan, et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 2018, 18(7): 4541-4548. |
105 | BANERJEE Debashree, HALLBERG Tomas, CHEN Shangzhi, et al. Electrical tuning of radiative cooling at ambient conditions[J]. Cell Reports Physical Science, 2023, 4(2): 101274. |
106 | KIM Hyeonseok, CHOI Joonhwa, KIM Kyun Kyu, et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin[J]. Nature Communications, 2021, 12(1): 4658. |
107 | ZHANG Weitian, TIAN Hongmiao, LIU Tianci, et al. Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation[J]. Materials Horizons, 2023, 10(6): 2024-2034. |
108 | BAI Xueqiong, LIAO Ningfang, WU Wenmin. Assessment of camouflage effectiveness based on perceived color difference and gradient magnitude[J]. Sensors, 2020, 20(17): 4672. |
109 | WANG Guoping, CHEN Xuechen, LIU Sheng, et al. Mechanical chameleon through dynamic real-time plasmonic tuning[J]. ACS Nano, 2016, 10(2): 1788-1794. |
110 | ZHANG Min, LI Songjing. Low-cost and facile implementation of microfluidic colour-changing devices using dry film photoresist-based moulds[J]. Journal of Experimental Nanoscience, 2018, 13(1): 221-230. |
111 | WON Phillip, KIM Kyun Kyu, KIM Hyeonseok, et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics[J]. Advanced Materials, 2021, 33(19): e2002397. |
112 | MORIN Stephen A, SHEPHERD Robert F, KWOK Sen Wai, et al. Camouflage and display for soft machines[J]. Science, 2012, 337(6096): 828-832. |
113 | BERG Stuart, KUTRA Dominik, KROEGER Thorben, et al. Ilastik: Interactive machine learning for (bio)image analysis[J]. Nature Methods, 2019, 16(12): 1226-1232. |
114 | LI Huanhuan, YANG Tianhang, LI Lujia, et al. A camouflaged film imitating the chameleon skin with color-changing microfluidic systems based on the color information identification of background[J]. Journal of Bionic Engineering, 2021, 18(5): 1137-1146. |
115 | LI Lujia, LI Huanhuan, CAO Jian, et al. Heat transfer characteristics of the microfluidic biomimetic chameleon skin with active thermal camouflage[J]. Journal of Bionic Engineering, 2023, 20(2): 722-733. |
116 | SINHA Sneh, DANIELS Robert, YASSIN Omer, et al. Electrochromic fabric displays from a robust, open-air fabrication technique[J]. Advanced Materials Technologies, 2022, 7(3): 2100548. |
117 | JIA Yan, LIU Dongqing, CHEN Desui, et al. Transparent dynamic infrared emissivity regulators[J]. Nature Communications, 2023, 14(1): 5087. |
118 | LIANG Gengyuan, XIAO Ying, ZHANG Jianwei, et al. Optimizing the emissivity regulation performance of a multilayer adaptive infrared camouflage structure based on transport ability control of an ionic liquid[J]. Applied Surface Science, 2023, 614: 156145. |
[1] | 罗世发, 王侃, 张冰剑, 陈清林. 原油常减压蒸馏装置热集成方案分析评价[J]. 化工进展, 2024, 43(9): 4810-4816. |
[2] | 石家汀, 王辉, 蒲凯凯, 赵婷, 聂丽君, 郑娜, 高宇航, 薛坤坤, 石建惠. 具有碳空位超薄g-C3N4纳米片可见光下产过氧化氢[J]. 化工进展, 2024, 43(7): 4148-4154. |
[3] | 宋兴飞, 贾鑫, 安萍, 韩振南, 许光文. 热化学反应工程科学与技术发展与展望[J]. 化工进展, 2024, 43(7): 3513-3533. |
[4] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
[5] | 郑可欣, 江雨欣, 毕可鑫, 赵祺铭, 陈少臣, 王冰冰, 任俊宇, 吉旭, 邱彤, 戴一阳. 用于蒸汽裂解产物成分预测的集成迁移学习框架[J]. 化工进展, 2024, 43(5): 2880-2889. |
[6] | 高凡翔, 刘阳, 张贵泉, 秦锋, 姚建涛, 金辉, 师进文. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342. |
[7] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
[8] | 张志伟, 杨伟鑫, 张隽佶. 长波长驱动光开关染料分子研究进展[J]. 化工进展, 2023, 42(8): 4058-4075. |
[9] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[10] | 乔旭, 张竹修. 化工本征安全技术发展路径的思考与探索[J]. 化工进展, 2023, 42(7): 3319-3324. |
[11] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[12] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[13] | 多佳, 姚国栋, 王英霁, 曾旭, 金滨滨. 改性Au-TiO2光降解废水中诺氟沙星的影响[J]. 化工进展, 2023, 42(2): 624-630. |
[14] | 周颖, 郝康安, 王少凡, 黄安荣, 吴翀, 左晓玲. 可见光响应型染料基多功能光引发体系的研究进展[J]. 化工进展, 2023, 42(12): 6438-6451. |
[15] | 刘亚, 李静茹, 蔡东仁, 周树锋, 王远鹏, 詹国武, 李清彪. 基于希瓦氏菌基因工程菌制备集成催化剂及光催化性能[J]. 化工进展, 2023, 42(11): 5908-5919. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |