化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6692-6699.DOI: 10.16085/j.issn.1000-6613.2023-2164
• 能源加工与技术 • 上一篇
收稿日期:
2023-12-07
修回日期:
2024-01-31
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
国丽萍
作者简介:
张家俊(1999—),男,博士研究生,研究方向为油气长距离管道输送理论与技术。E-mail:zhangjiajun1917@163.com。
基金资助:
Received:
2023-12-07
Revised:
2024-01-31
Online:
2024-12-15
Published:
2025-01-11
Contact:
GUO Liping
摘要:
在当前“双碳”背景下,氢能因其清洁、零碳、高效、储量丰富等特点,将逐渐发展成为世界能源的重要组成部分。氢能的长距离管道输送技术是其产业规模化应用的关键技术,亦是制约其发展的瓶颈技术。管道输送被认为是氢能长距离运输的最佳方式,具有安全、高效、节能的特点。本文对氢能管道输送技术最新进展进行全面的概述和总结,分析表明:在国内对于氢能管道输送技术研究中,受限于掺氢比、安全性和相关技术工艺、设备不完善等问题,氢能长输管道技术规范标准和风险评估体系尚未完整建立,氢能的规模化应用尚未实现;实现氢能大规模应用,关键在于氢能管道输送核心技术的突破和氢能管道输送技术标准体系的建立和完善。
中图分类号:
张家俊, 国丽萍. 氢能管道输送技术最新进展[J]. 化工进展, 2024, 43(12): 6692-6699.
ZHANG Jiajun, GUO Liping. Latest progress in hydrogen pipeline transportation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6692-6699.
性质 | 氢气 | 甲烷 | |
---|---|---|---|
物理性质 | 分子质量(相对) | 2.02 | 16.04 |
密度(20℃、100kPa)/kg·m-3 | 0.0827 | 0.6594 | |
燃料质量指标 | 高热值/MJ·m-3 | 12.09 | 37.77 |
低热值/MJ·m-3 | 10.23 | 34.04 | |
燃料安全指标 | 扩散系数(空气中)/cm·s-1 | 0.61 | 0.16 |
空气中最小点火能量/mJ | 0.017 | 0.274 | |
爆炸极限/% | 4.0~75.0 | 5.3~15.0 | |
着火温度(空气中)/℃ | 585 | 540 | |
火焰温度(空气中)/℃ | 2045 | 1875 | |
燃烧速度(空气中)/cm·s-1 | 265~325 | 34~37 | |
最小淬熄距离/cm | 0.064 | 0.203 |
表1 常温常压下氢气与甲烷部分相关理化性质[13-14]
性质 | 氢气 | 甲烷 | |
---|---|---|---|
物理性质 | 分子质量(相对) | 2.02 | 16.04 |
密度(20℃、100kPa)/kg·m-3 | 0.0827 | 0.6594 | |
燃料质量指标 | 高热值/MJ·m-3 | 12.09 | 37.77 |
低热值/MJ·m-3 | 10.23 | 34.04 | |
燃料安全指标 | 扩散系数(空气中)/cm·s-1 | 0.61 | 0.16 |
空气中最小点火能量/mJ | 0.017 | 0.274 | |
爆炸极限/% | 4.0~75.0 | 5.3~15.0 | |
着火温度(空气中)/℃ | 585 | 540 | |
火焰温度(空气中)/℃ | 2045 | 1875 | |
燃烧速度(空气中)/cm·s-1 | 265~325 | 34~37 | |
最小淬熄距离/cm | 0.064 | 0.203 |
1 | KHZOUZ Martin, GKANAS Evangelos I, DU Shangfeng, et al. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming[J]. Fuel, 2018, 232: 672-683. |
2 | YAO Zhendong, LIANG Zhaoqing, XIAO Xuezhang, et al. Achieving excellent cycle stability in Zr-Nb-Co-Ni based hydrogen isotope storage alloys by controllable phase transformation reaction[J]. Renewable Energy, 2022, 187: 500-507. |
3 | 滕欣余, 张国华, 胡辰树 等. 我国典型城市氢能经济性和低成本氢源探索分析[J]. 化工进展, 2022, 41(12): 6295-6301. |
TENG Xinyu, ZHANG Guohua, HU Chenshu, et al. Analysis on hydrogen energy economy and low cost of hydrogen source in typical cities of China[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6295-6301. | |
4 | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
ZHOU Ying, ZHOU Hongjun, XU Chunming. Exploration of the development path for the hydrogen energy[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592. | |
5 | LEBROUHI B E, DJOUPO J J, LAMRANI B, et al. Global hydrogen development—A technological and geopolitical overview[J]. International Journal of Hydrogen Energy. 2022;47(11): 7016-7048. |
6 | 刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势[J]. 油气储运, 2022, 41(5): 498-514. |
LIU Cuiwei, PEI Yebin, HAN Hui, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498-514. | |
7 | WANG Guihua, OGDEN Joan M, NICHOLAS Michael A. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2731-2742. |
8 | CHAE Min Ju, KIM Ju Hyun, MOON Bryan, et al. The present condition and outlook for hydrogen-natural gas blending technology[J]. Korean Journal of Chemical Engineering, 2022, 39(2): 251-262. |
9 | 刘超广, 马贵阳, 孙东旭. 氢气管输技术研究进展[J]. 太阳能学报, 2023, 44(1): 451-458. |
LIU Chaoguang, MA Guiyang, SUN Dongxu. Research progress in hydrogen pipeline transportation technology[J]. Acta Energiae Solaris Sinica, 2023, 44(1): 451-458. | |
10 | WANG Hantong, TONG Zhi, ZHOU Guijuan, et al. Research and demonstration on hydrogen compatibility of pipelines: A review of current status and challenges[J]. International Journal of Hydrogen Energy, 2022, 47(66): 28585-28604. |
11 | 杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展[J]. 油气储运, 2023, 42(10): 1107-1117. |
DU Jianwei, MING Hongliang, WANG Jianqiu. Research status and progress on hydrogen embrittlement in hydrogen transmission pipelines[J]. Oil & Gas Storage and Transportation, 2023, 42(10): 1107-1117. | |
12 | ZHANG Chaoyang, SHAO Yanbo, SHEN Wenpeng, et al. Key technologies of pure hydrogen and hydrogen-mixed natural gas pipeline transportation[J]. ACS Omega, 2023, 8(22): 19212-19222. |
13 | 李敬法, 苏越, 张衡, 等. 掺氢天然气管道输送研究进展[J]. 天然气工业, 2021, 41(4): 137-152. |
LI Jingfa, SU Yue, ZHANG Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4): 137-152. | |
14 | 时浩, 吕杨, 谭更彬. 天然气管道掺氢输送可行性探究[J]. 天然气与石油, 2022, 40(4): 23-31. |
SHI Hao, Yang LYU, TAN Gengbin. Feasibility study on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas and Oil, 2022, 40(4): 23-31. | |
15 | 李玉星, 姚光镇. 输气管道设计与管理[M]. 2版. 东营: 中国石油大学出版社, 2009. |
LI Yuxing, YAO Guangzhen. Design and management of gas transmission pipeline[M]. 2rd ed. Dongying: China University of Petroleum Press, 2009. | |
16 | 李长俊, 黄泽俊. 天然气管道输送 [M]. 3版. 北京: 石油工业出版社, 2016. |
LI Changjun, HUANG Zongze. Natural gas pipeline transportation[M]. 3rd ed. Beijing: Petroleum Industry Press, 2016. | |
17 | LOWESMITH B J, HANKINSON G, SPATARU C, et al. Gas build-up in a domestic property following releases of methane/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5932-5939. |
18 | MELAINA M, ANTONIA O, PENEV M. Blending hydrogen into natural gas pipeline networks: A review of key issues[R]. Technical Report NREL/TP-5600-51995, 2013. |
19 | 任若轩, 游双矫, 朱新宇, 等. 天然气掺氢输送技术发展现状及前景[J]. 油气与新能源, 2021, 33(4): 26-32. |
REN Ruoxuan, YOU Shuangjiao, ZHU Xinyu, et al. Development status and prospects of hydrogen compressed natural gas transportation technology[J]. Petroleum and New Energy, 2021, 33(4): 26-32. | |
20 | 陈伟锋, 尚娟, 邢百汇 等. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
CHEN Weifeng, SHANG Juan, XING Baihui, et al. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids[J]. Chemical Industry and Engineering Progress, 2022, 41(3)1487-1493. | |
21 | 尚娟, 鲁仰辉, 郑津洋, 等. 掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40(10): 5499-5505. |
SHANG Juan, LU Yanghui, ZHENG Jinyang, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505. | |
22 | 刘啸奔, 张东, 武学健, 等. 掺氢天然气管道完整性评价技术的进展与挑战[J]. 力学与实践, 2023, 45(2): 245-259. |
LIU Xiaoben, ZHANG Dong, WU Xuejian, et al. Advances and challenges of hydrogen-blended natural gas pipeline integrity assessment technology[J]. Mechanics in Engineering, 2023, 45(2): 245-259 | |
23 | OHAERI Enyinnaya, EDUOK Ubong, SZPUNAR Jerzy. Hydrogen related degradation in pipeline steel: A review[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14584-14617. |
24 | 崔月瑶. 纯氢长输氢管线钢材料与抗氢脆技术的研究[J]. 冶金与材料, 2023, 43(1): 50-52. |
CUI Yueyao. Study on pure hydrogen long-distance hydrogen pipeline steel material and hydrogen embrittlement resistance technology[J]. Metallurgy and Materials, 2023, 43(1): 50-52. | |
25 | 周承商, 黄通文, 刘煌, 等. 混氢天然气输氢技术研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 31-43. |
ZHOU Chengshang, HUANG Tongwen, LIU Huang, et al. Research progress of hydrogen transport technology for blended hydrogen natural gas[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 31-43. | |
26 | 刘自亮, 熊思江, 郑津洋, 等. 氢气管道与天然气管道的对比分析[J]. 压力容器, 2020, 37(2): 56-63. |
LIU Ziliang, XIONG Sijiang, ZHENG Jinyang, et al. Comparative analysis of hydrogen pipeline and natural gas pipeline[J]. Pressure Vessel Technology, 2020, 37(2): 56-63. | |
27 | WU Xia, ZHANG Haifeng, YANG Ming, et al. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: Mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels[J]. International Journal of Hydrogen Energy, 2022, 47(12): 8071-8090. |
28 | 李宁. 天然气管道内腐蚀的原理及直接评价[J]. 腐蚀与防护, 2013, 34(4): 362-366. |
LI Ning. Principle and direct assessment of internal corrosion of gas pipelines[J]. Corrosion & Protection, 2013, 34(4): 362-366. | |
29 | XING Xiao, ZHANG Hao, CUI Gan, et al. Hydrogen inhibited phase transition near crack tip—An atomistic mechanism of hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2019, 44(31): 17146-17153. |
30 | SONG Jun, CURTIN W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12: 145-151. |
31 | ZHANG Shuai, LI Juan, AN Teng, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in situ hydrogen permeation[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20621-20629. |
32 | AHMAD Gondal Irfan, SAHIR Mukhtar Hussain. Prospects of natural gas pipeline infrastructure in hydrogen transportation[J]. International Journal of Energy Research, 2012, 36(15): 1338-1345. |
33 | 王宇辰, 吴倩, 刘欢, 等. 管线钢氢相容性测试方法及氢脆防控研究进展[J]. 油气储运, 2023, 42(11): 1251-1260. |
WANG Yuchen, WU Qian, LIU Huan, et al. Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel[J]. Oil & Gas Storage and Transportation, 2023, 42(11): 1251-1260. | |
34 | 张烘玮, 赵杰, 李敬法, 等. 天然气掺氢输送环境下的腐蚀与氢脆研究进展[J]. 天然气工业, 2023, 43(6): 126-138. |
ZHANG Hongwei, ZHAO Jie, LI Jingfa, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen-natural gas pipeline transportation[J]. Natural Gas Industry, 2023, 43(6): 126-138. | |
35 | MENG Bo, GU Chaohua, ZHANG Lin, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7404-7412. |
36 | SHANG Juan, ZHENG Jinyang, HUA Zhengli, et al. Effects of stress concentration on the mechanical properties of X70 in high-pressure hydrogen-containing gas mixtures[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28204-28215. |
37 | 白光乾, 王秋岩, 邓海全, 等. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135. |
BAI Guangqian, WANG Qiuyan, DENG Haiquan, et al. Hydrogen resistance of X52 pipeline steel under hydrogen environment[J]. Materials Reports, 2020, 34(22): 22130-22135. | |
38 | QUINTINO Filipe M, NASCIMENTO Nuno, FERNANDES Edgar C. Aspects of hydrogen and biomethane introduction in natural gas infrastructure and equipment[J]. Hydrogen, 2021, 2(3): 301-318. |
39 | 张小强, 蒋庆梅. 在已建天然气管道中添加氢气管材适应性分析[J]. 压力容器, 2015, 32(10): 17-22. |
ZHANG Xiaoqiang, JIANG Qingmei. Material adaptive analysis of blending hydrogen into existing nature gas pipeline[J]. Pressure Vessel Technology, 2015, 32(10): 17-22. | |
40 | Dong-Su BAE, SUNG Chi-Eun, BANG Hyun-Ju, et al. Effect of highly pressurized hydrogen gas charging on the hydrogen embrittlement of API X70 steel[J]. Metals and Materials International, 2014, 20(4): 653-658. |
41 | MAHAJAN Devinder, TAN Kun, VENKATESH T, et al. Hydrogen blending in gas pipeline networks—A review[J]. Energies, 2022, 15(10): 3582. |
42 | 王守凤, 刘佳. 论天然气管道泄漏的主要原因及消除方法[J]. 中国石油和化工标准与质量, 2013, 33(14): 270. |
WANG Shoufeng, LIU Jia. On the main causes and elimination methods of natural gas pipeline leakage[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(14): 270. | |
43 | LIU Cuiwei, PEI Yebin, CUI Zhaoxue, et al. Study on the stratification of the blended gas in the pipeline with hydrogen into natural gas[J]. International Journal of Hydrogen Energy, 2023, 48(13): 5186-5196. |
44 | 赵永志, 张鑫, 郑津洋, 等. 掺氢天然气管道输送安全技术[J]. 化工机械, 2016, 43(1): 1-7. |
ZHAO Yongzhi, ZHANG Xin, ZHENG Jinyang, et al. Safety technology for pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Engineering & Machinery, 2016, 43(1): 1-7. | |
45 | EMAMI Sina Davazdah, RAJABI Meisam, CHE HASSAN Che Rosmani, et al. Experimental study on premixed hydrogen/air and hydrogen-methane/air mixtures explosion in 90 degree bend pipeline[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14115-14120. |
46 | BOURAS Fethi, HADI ATTIA Mohammed EL, KHALDI Fouad, et al. Control of methane flame properties by hydrogen fuel addition: Application to power plant combustion chamber[J]. International Journal of Hydrogen Energy, 2017, 42(13): 8932-8939. |
47 | SHIRVILL L C, ROBERTS T A, ROYLE M, et al. Experimental study of hydrogen explosion in repeated pipe congestion—Part 2: Effects of increase in hydrogen concentration in hydrogen-methane-air mixture[J]. International Journal of Hydrogen Energy, 2019, 44(5): 3264-3276. |
48 | LOWESMITH B J, HANKINSON G, JOHNSON D M. Vapour cloud explosions in a long congested region involving methane/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2011, 89(4): 234-247. |
49 | WOOLLEY R M, FAIRWEATHER M, FALLE S A E G, et al. Prediction of confined, vented methane-hydrogen explosions using a computational fluid dynamic approach[J]. International Journal of Hydrogen Energy, 2013, 38(16): 6904-6914. |
50 | 苏越, 李敬法, 宇波, 等. 氢气和天然气在静态混合器中的掺混模拟[J]. 天然气工业, 2023, 43(3): 113-122. |
SU Yue, LI Jingfa, YU Bo, et al. Simulation study on the mixing of hydrogen and natural gas in static mixers[J]. Natural Gas Industry, 2023, 43(3): 113-122. | |
51 | FETISOV Vadim, DAVARDOOST Hadi, MOGYLEVETS Veronika. Technological aspects of methane-hydrogen mixture transportation through operating gas pipelines considering industrial and fire safety[J]. Fire, 2023, 6(10): 409. |
52 | BOLOBOV Victor I, LATIPOV Il’nur U, ZHUKOV Valentin S, et al. Using the magnetic anisotropy method to determine hydrogenated sections of a steel pipeline[J]. Energies, 2023, 16(15): 5585. |
53 | 谭遥, 李琦, 王捷, 等. 掺氢天然气分离工艺方案及经济性分析[J]. 石油与天然气化工, 2023, 52(4): 41-47. |
TAN Yao, LI Qi, WANG Jie, et al. Scheme and economic analysis of hydrogen-blended natural gas separation[J]. Chemical Engineering of Oil & Gas, 2023, 52(4): 41-47 | |
54 | 孔莹莹, 崔继彤, 韩辉, 等. 国内外氢气管道长距离输送技术标准对比与探讨[J]. 油气储运, 2023, 42(8): 944-951. |
KONG Yingying, CUI Jitong, HAN Hui, et al. Comparative analysis and discussion of domestic and foreign technical standards for hydrogen pipeline transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 944-951. | |
55 | 吴全, 沈珏新, 余磊 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33. |
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the “dual-carbon” background[J]. Petroleum and New Energy, 2022, 34(5): 27-33. | |
56 | MA Haoming, SUN Zhe, XUE Zhenqian, et al. A systemic review of hydrogen supply chain in energy transition[J]. Frontiers in Energy, 2023, 17(1): 102-122. |
57 | 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129. |
TENG Lin, YIN Pengbo, NIE Chaofei, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 王月, 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188. |
[3] | 王波, 王斌, 龚翔, 杨福胜, 方涛. 基于反应器设计的有机液态储氢载体脱氢反应强化研究进展[J]. 化工进展, 2024, 43(S1): 189-208. |
[4] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[5] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[6] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[7] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[8] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[9] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
[10] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[11] | 陈高祥, 王荣昌, 蒋佳承. 微生物电合成系统阴极电子传递机制和氢介导强化措施[J]. 化工进展, 2024, 43(S1): 504-516. |
[12] | 徐晴晴, 张璇, 赵瑞东, 熊鑫, 蒋璐朦, 禹胜阳. 基于贝叶斯网络的掺氢管道泄漏风险评价方法[J]. 化工进展, 2024, 43(S1): 61-70. |
[13] | 王正峰, 谢雨杭, 李伟科, 范永春, 康钟尹, 付乾. 多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐[J]. 化工进展, 2024, 43(9): 4892-4899. |
[14] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
[15] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |