化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6735-6749.DOI: 10.16085/j.issn.1000-6613.2023-2051
• 工业催化 • 上一篇
收稿日期:
2023-11-24
修回日期:
2024-02-28
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
马子然
作者简介:
佟振伟(1991-),女,博士研究生,研究方向为光电催化。E-mail:zhenwei.tong@chnenergy.com.cn。
基金资助:
TONG Zhenwei(), LYU Fei, MA Ziran(
), LI Ge, PENG Shengpan
Received:
2023-11-24
Revised:
2024-02-28
Online:
2024-12-15
Published:
2025-01-11
Contact:
MA Ziran
摘要:
CO2电催化还原技术在能源转换和温室气体减排中具有重要应用潜力。如何获得高电流密度、高选择性的目标产物,尤其是多碳产物,成为该领域的难点和热点。本文综述了铜基催化剂在电催化还原CO2制乙醇领域的最新研究进展,包括CO2电催化制乙醇的最高性能水平、催化剂材料的改性策略、电解工艺创新、电极稳定性调控、反应机理等。特别关注了那些能够达到工业应用电流密度且乙醇选择性较高的铜基催化剂的设计、合成和应用。讨论了影响铜基催化剂性能的关键因素,如催化剂的价态、催化剂性能衰减以及电极稳定性等。最后,展望了铜基催化剂在CO2电催化还原制乙醇领域的未来研究方向,包括提高催化效率、稳定性和工艺放大研究。本文旨在为电催化CO2还原制乙醇高效催化体系的研发和工业化可行性提供参考和建议。
中图分类号:
佟振伟, 闾菲, 马子然, 李歌, 彭胜攀. 铜基催化剂电催化还原CO2制乙醇最新研究进展[J]. 化工进展, 2024, 43(12): 6735-6749.
TONG Zhenwei, LYU Fei, MA Ziran, LI Ge, PENG Shengpan. Recent advances in copper-based catalysts for electrocatalytic reduction of CO2 to ethanol[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6735-6749.
反应 | 电极电位(vs. SHE)/V |
---|---|
2H++2e- | -0.42 |
CO2+8H-+8e- | -0.24 |
CO2+6H++6e- | -0.38 |
CO2+4H++4e- | -0.51 |
CO2+2H++2e- | -0.52 |
CO2+2H++2e- | -0.61 |
2CO2+12H++12e- | 0.064 |
2CO2+12H++12e- | 0.084 |
表1 CO2电催化还原半反应电极电位
反应 | 电极电位(vs. SHE)/V |
---|---|
2H++2e- | -0.42 |
CO2+8H-+8e- | -0.24 |
CO2+6H++6e- | -0.38 |
CO2+4H++4e- | -0.51 |
CO2+2H++2e- | -0.52 |
CO2+2H++2e- | -0.61 |
2CO2+12H++12e- | 0.064 |
2CO2+12H++12e- | 0.084 |
催化剂 | 电流密度/A·cm-2 | FE乙醇/% | 电位/V vs. RHE | 膜种类 | 电解液 | 电解池类型 | 稳定时间/h | 参考文献 |
---|---|---|---|---|---|---|---|---|
LA Cu2O | 0.4 | 25 | — | — | 2mol/L KCl | 流动池 | 2 | [ |
Cu δ+ | 0.4 | 48.1 | -2.88 | 阴膜 | 0.02mol/L KHCO3 | MEA | 10 | [ |
CuAu | 0.3 | 60 | -0.75 | — | 0.1mol/L KHCO3 | 流动池 | 90 | [ |
V-Cu2Se | 0.2 | 68 | -0.8 | — | 0.1mol/L KHCO3 | 流动池 | 140 | [ |
BaO/Cu | 0.4 | 45 | -0.75 | 阴膜 | 1mol/L KOH | 流动池 | 20 | [ |
F-Cu | 1.6 | 15 | -0.9 | 阴膜 | 1mol/L KOH | 流动池 | 40 | [ |
FeTPP[Cl]/Cu | 0.124 | 41 | -0.82 | — | 1mol/L KHCO3 | 流动池 | 2 | [ |
N-C/Cu | 0.156 | 52 | -0.68 | 阴膜 | 1mol/L KOH | 流动池 | — | [ |
Ce(OH) x -Cu | 0.128 | 43 | -0.7 | 阴膜 | 1mol/L KOH | 流动池 | 6 | [ |
CuO x @C | 0.164 | 45 | -1 | — | 1mol/L KOH | 流动池 | 50 | [ |
Ag/Cu2O | 0.32 | 40 | -0.87 | 阴膜 | 1mol/L KOH | 流动池 | 6 | [ |
表2 近期铜基催化剂CO2ER制备乙醇产物的最新活性数据总结
催化剂 | 电流密度/A·cm-2 | FE乙醇/% | 电位/V vs. RHE | 膜种类 | 电解液 | 电解池类型 | 稳定时间/h | 参考文献 |
---|---|---|---|---|---|---|---|---|
LA Cu2O | 0.4 | 25 | — | — | 2mol/L KCl | 流动池 | 2 | [ |
Cu δ+ | 0.4 | 48.1 | -2.88 | 阴膜 | 0.02mol/L KHCO3 | MEA | 10 | [ |
CuAu | 0.3 | 60 | -0.75 | — | 0.1mol/L KHCO3 | 流动池 | 90 | [ |
V-Cu2Se | 0.2 | 68 | -0.8 | — | 0.1mol/L KHCO3 | 流动池 | 140 | [ |
BaO/Cu | 0.4 | 45 | -0.75 | 阴膜 | 1mol/L KOH | 流动池 | 20 | [ |
F-Cu | 1.6 | 15 | -0.9 | 阴膜 | 1mol/L KOH | 流动池 | 40 | [ |
FeTPP[Cl]/Cu | 0.124 | 41 | -0.82 | — | 1mol/L KHCO3 | 流动池 | 2 | [ |
N-C/Cu | 0.156 | 52 | -0.68 | 阴膜 | 1mol/L KOH | 流动池 | — | [ |
Ce(OH) x -Cu | 0.128 | 43 | -0.7 | 阴膜 | 1mol/L KOH | 流动池 | 6 | [ |
CuO x @C | 0.164 | 45 | -1 | — | 1mol/L KOH | 流动池 | 50 | [ |
Ag/Cu2O | 0.32 | 40 | -0.87 | 阴膜 | 1mol/L KOH | 流动池 | 6 | [ |
1 | International English Agency. Global energy review: CO2 emissions in 2021[EB/OL]. [2023-11-24]. . |
2 | Global Monitoring Laboratory, Earth System Research Laboratories. Monthly average Mauna Loa CO2 [EB/OL]. [2023-11-24]. . |
3 | QIAO Jinli, LIU Yuyu, HONG Feng, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
4 | KUHL Kendra P, CAVE Etosha R, ABRAM David N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059. |
5 | WANG Shunwu, WU Tijun, LIN Jun, et al. Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J]. ACS Catalysis, 2020, 10(11): 6389-6401. |
6 | KONDRATENKO Evgenii V, Guido MUL, BALTRUSAITIS Jonas, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environmental Science, 2013, 6(11): 3112-3135. |
7 | TONG Zhenwei, YANG Dong, LI Zhen, et al. Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis[J]. ACS Nano, 2017, 11(1): 1103-1112. |
8 | YANG Zhengyang, WAN Mingyu, GU Zhiyong, et al. CO2RR-to-CO enhanced by self-assembled monolayer and Ag catalytic interface[J]. The Journal of Physical Chemistry C, 2023, 127(36): 17685-17693. |
9 | TODOROVA Tanya K, SCHREIBER Moritz W, FONTECAVE Marc. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts[J]. ACS Catalysis, 2020, 10(3): 1754-1768. |
10 | LI Yi, CHEN Yanghan, CHEN Tao, et al. Insight into the electrochemical CO2-to-ethanol conversion catalyzed by Cu2S nanocrystal-decorated Cu nanosheets[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18857-18866. |
11 | ZHAO Tete, LI Jinhan, LIU Jiuding, et al. Tailoring the catalytic microenvironment of Cu2O with SiO2 to enhance C2+ product selectivity in CO2 electroreduction[J]. ACS Catalysis, 2023, 13(7): 4444-4453. |
12 | LAI Wenchuan, QIAO Yan, ZHANG Jiawei, et al. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy & Environmental Science, 2022, 15(9): 3603-3629. |
13 | OLOMAN Colin, LI Hui. Electrochemical processing of carbon dioxide[J]. ChemSusChem, 2008, 1(5): 385-391. |
14 | ALBO Jonathan, IRABIEN Angel. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol[J]. Journal of Catalysis, 2016, 343: 232-239. |
15 | CHEN Lei, CHEN Jingyi, FAN Lei, et al. Additive-assisted electrodeposition of Cu on gas diffusion electrodes enables selective CO2 reduction to multicarbon products[J]. ACS Catalysis, 2023, 13(18): 11934-11944. |
16 | FANG Mingwei, WANG Meiling, WANG Zewen, et al. Hydrophobic, ultrastable Cu δ + for robust CO2 electroreduction to C2 products at ampere-current levels[J]. Journal of the American Chemical Society, 2023, 145(20): 11323-11332. |
17 | ZHU Chang, SONG Yanfang, DONG Xiao, et al. Ampere-level CO2 reduction to multicarbon products over a copper gas penetration electrode[J]. Energy & Environmental Science, 2022, 15(12): 5391-5404. |
18 | HUANG Jianan Erick, LI Fengwang, OZDEN Adnan, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078. |
19 | 张少阳, 商阳阳, 赵瑞花, 等. 电催化还原二氧化碳制一氧化碳催化剂研究进展[J]. 化工进展, 2022, 41(4): 1848-1857. |
ZHANG Shaoyang, SHANG Yangyang, ZHAO Ruihua, et al. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1848-1857. | |
20 | 华亚妮, 冯少广, 党欣悦, 等. CO2 电催化还原产合成气研究进展[J]. 化工进展, 2022, 41(3): 1224-1240. |
HUA Yani, FENG Shaoguang, DANG Xinyue, et al. Research progress of CO2 electrocatalytic reduction to syngas[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240. | |
21 | 张轩, 黄耀桢, 邵秀丽, 等. 结构化铜基催化剂电化学还原CO2为多碳产物研究进展[J]. 化工进展, 2021, 40(7): 3736-3746. |
ZHANG Xuan, HUANG Yaozhen, SHAO Xiuli, et al. Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3736-3746. | |
22 | KORTLEVER Ruud, SHEN Jing, SCHOUTEN Klaas Jan P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015, 6(20): 4073-4082. |
23 | NIE Xiaowa, ESOPI Monica R, JANIK Michael J, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie, 2013, 125(9): 2519-2522. |
24 | YAN Tianxiang, CHEN Xiaoyi, KUMARI Lata, et al. Multiscale CO2 electrocatalysis to C2+ products: Reaction mechanisms, catalyst design, and device fabrication[J]. Chemical Reviews, 2023, 123(17): 10530-10583. |
25 | KARAPINAR Dilan, CREISSEN Charles E, RIVERA DE LA CRUZ José Guillermo, et al. Electrochemical CO2 reduction to ethanol with copper-based catalysts[J]. ACS Energy Letters, 2021, 6(2): 694-706. |
26 | SABATIER Paul. Hydrogénations et déshydrogénations par catalyse[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1911, 44(3): 1984-2001. |
27 | BAGGER Alexander, JU Wen, VARELA Ana Sofia, et al. Electrochemical CO2 reduction: A classification problem[J]. Chemphyschem, 2017, 18(22): 3266-3273. |
28 | KUANG Siyu, SU Yaqiong, LI Minglu, et al. Asymmetrical electrohydrogenation of CO2 to ethanol with copper-gold heterojunctions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(4): e2214175120. |
29 | LEI Qiong, ZHU Hui, SONG Kepeng, et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction[J]. Journal of the American Chemical Society, 2020, 142(9): 4213-4222. |
30 | HORI Yoshio, TAKAHASHI Ichiro, KOGA Osamu, et al. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes[J]. The Journal of Physical Chemistry B, 2002, 106(1): 15-17. |
31 | NITOPI Stephanie, BERTHEUSSEN Erlend, SCOTT Soren B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
32 | CAI Rongming, SUN Mingzi, YANG Fei, et al. Engineering Cu(Ⅰ)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction[J]. Chem, 2024,10(1): 211-233. |
33 | GROSSE Philipp, GAO Dunfeng, SCHOLTEN Fabian, et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects[J]. Angewandte Chemie International Edition, 2018, 57(21): 6192-6197. |
34 | LIANG Zhiqin, ZHUANG Taotao, SEIFITOKALDANI Ali, et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2 [J]. Nature Communications, 2018, 9(1): 3828. |
35 | CHEN Chubai, YU Sunmoon, YANG Yao, et al. Exploration of the bio-analogous asymmetric C-C coupling mechanism in tandem CO2 electroreduction[J]. Nature Catalysis, 2022, 5: 878-887. |
36 | YU Jinli, WANG Juan, MA Yangbo, et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products[J]. Advanced Functional Materials, 2021, 31(37): 2102151. |
37 | SUN Weipei, WANG Peng, JIANG Yawen, et al. V-doped Cu2Se hierarchical nanotubes enabling flow-cell CO2 electroreduction to ethanol with high efficiency and selectivity[J]. Advanced Materials, 2022, 34(50):2207691. |
38 | Qi Hang LOW, Nicholas Wei Xian LOO, Federico CALLE-VALLEJO, et al. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam[J]. Angewandte Chemie International Edition, 2019, 58(8): 2256-2260. |
39 | XU Aoni, HUNG Sung-Fu, CAO Ang, et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation[J]. Nature Catalysis, 2022, 5: 1081-1088. |
40 | ZHOU Yansong, CHE Fanglin, LIU Min, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons[J]. Nature Chemistry, 2018, 10(9): 974-980. |
41 | ZHUANG Taotao, LIANG Zhiqin, SEIFITOKALDANI Ali, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1: 421-428. |
42 | MA Wenchao, XIE Shunji, LIU Tongtong, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020, 3: 478-487. |
43 | SU Xiaozhi, JIANG Zhuoli, ZHOU Jing, et al. Complementary operando spectroscopy identification of in situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol[J]. Nature Communications, 2022, 13(1): 1322. |
44 | LI Fengwang, LI Yuguang C, WANG Ziyun, et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces[J]. Nature Catalysis, 2020, 3: 75-82. |
45 | WANG Xue , WANG Ziyun, GARCÍA DE ARQUER F Pelayo, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5: 478-486. |
46 | REN Dan, DENG Yilin, HANDOKO Albertus Denny, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(Ⅰ) oxide catalysts[J]. ACS Catalysis, 2015, 5(5): 2814-2821. |
47 | DING Lianchun, ZHU Nannan, HU Yan, et al. Over 70% Faradaic efficiency for CO2 electroreduction to ethanol enabled by potassium dopant-tuned interaction between copper sites and intermediates[J]. Angewandte Chemie International Edition, 2022, 134(36): e202209268. |
48 | CHU Senlin, YAN Xupeng, CHOI Changhyeok, et al. Stabilization of Cu+ by tuning a CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene[J]. Green Chemistry, 2020, 22(19): 6540-6546. |
49 | LUO Mingchuan, WANG Ziyun, LI Yuguang C, et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen[J]. Nature Communications, 2019, 10(1): 5814. |
50 | JIN Hongqiang, ZHOU Kaixin, ZHANG Ruoxi, et al. Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation[J]. Nature Communications, 2023, 14(1): 2494. |
51 | ZANG Yipeng, LIU Tianfu, WEI Pengfei, et al. Selective CO2 electroreduction to ethanol over a carbon-coated CuO x catalyst[J]. Angewandte Chemie International Edition, 2022, 61(40): e202209629. |
52 | WANG Pengtang, YANG Hao, TANG Cheng, et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling[J]. Nature Communications, 2022, 13(1): 3754. |
53 | ROMERO CUELLAR N S, SCHERER C, KAÇKAR B, et al. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities[J]. Journal of CO2 Utilization, 2020, 36: 263-275. |
54 | BURDYNY Thomas, SMITH Wilson A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019, 12(5): 1442-1453. |
55 | Sandra HERNANDEZ-ALDAVE, ANDREOLI Enrico. Fundamentals of gas diffusion electrodes and electrolysers for carbon dioxide utilisation: Challenges and opportunities[J]. Catalysts, 2020, 10(6): 713. |
56 | JEON Hyo Sang, KUNZE Sebastian, SCHOLTEN Fabian, et al. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene[J]. ACS Catalysis, 2018, 8(1): 531-535. |
57 | YANG Hongzhou, KACZUR Jerry J, SAJJAD Syed Dawar, et al. Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes[J]. Journal of CO2 Utilization, 2017, 20: 208-217. |
58 | PARK Jaeman, Hwanyeong OH, Taehun HA, et al. A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation[J]. Applied Energy, 2015, 155: 866-880. |
59 | KANG Jungtak, KIM Junbom. Membrane electrode assembly degradation by dry/wet gas on a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(23): 13125-13130. |
60 | WICKS Joshua, Melinda L JUE, BECK Victor A, et al. 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction[J]. Advanced Materials, 2021, 33(7): e2003855. |
61 | DINH Cao-Thang, BURDYNY Thomas, KIBRIA Md Golam, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787. |
[1] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[2] | 陈高祥, 王荣昌, 蒋佳承. 微生物电合成系统阴极电子传递机制和氢介导强化措施[J]. 化工进展, 2024, 43(S1): 504-516. |
[3] | 王博葳, 郑明朕, 王乐萌, 付东, 王珊, 朱生俊, 赵昆, 张盼. Na2SO4电解制备NaOH捕集CO2[J]. 化工进展, 2024, 43(S1): 604-614. |
[4] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
[5] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[6] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
[7] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
[8] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[9] | 卞维柏, 张睿轩, 潘建明. 无机金属锂离子筛材料制备方法研究进展[J]. 化工进展, 2024, 43(8): 4173-4186. |
[10] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
[11] | 罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909. |
[12] | 黄军, 张应娟, 林茵童, 韦雪纯, 吴雨桐, 毋高博, 莫钧麟, 赵祯霞, 赵钟兴. 蚕沙基生物多孔炭的制备及对杀虫单/呋虫胺的协同吸附与缓释性能[J]. 化工进展, 2024, 43(7): 3964-3971. |
[13] | 王娟, 卞春林, 陈翔宇, 王莹, 王新东, 左彦鑫, 肖本益. 微好氧厌氧消化研究进展[J]. 化工进展, 2024, 43(7): 4005-4014. |
[14] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[15] | 马海飞, 廖亚龙, 武敏, 贾小宝, 杨双宇. 湿法炼铜浸出液萃取分离硫酸机理[J]. 化工进展, 2024, 43(6): 3410-3419. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 148
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |