化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6443-6457.DOI: 10.16085/j.issn.1000-6613.2023-1871
• 资源与环境化工 • 上一篇
收稿日期:
2023-10-24
修回日期:
2024-02-17
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
蒋兰英
作者简介:
蒋兰英(1974—),女,博士,教授,研究方向为膜分离。E-mail:jianglanyingsme@csu.edu.cn。
基金资助:
JIANG Lanying1,2,3(), LI Zhen1, CHEN Cong1
Received:
2023-10-24
Revised:
2024-02-17
Online:
2024-11-15
Published:
2024-12-07
Contact:
JIANG Lanying
摘要:
正渗透(FO)是一种“复活”的膜分离技术。FO过程中水的过膜自发传递及水压低的特点使其具备了低能耗、污染小的独特优势。本文在对FO的分离基本原理、膜材料、汲取液的研究前沿以及产业发展现状进行简要介绍的基础上,汇总了全球有关FO处理垃圾渗滤液的研发现状,包括组合工艺的开发、膜污染的防治、汲取液的选择和回收、有价物的回收、工艺技术经济分析以及工程实践等。通过分析指出,FO+生物电化学系统(BES)在水回收的能耗、物耗方面优势显著,有良好的发展前景。间歇性渗透弛豫(IOR)反冲洗能有效去除膜污染,且过程不需要额外能量和化学试剂,易于操作,值得进一步的探讨。FO的技术经济特性对其在垃圾渗滤液处理中的应用非常关键,需要更加详细地了解。此外,现有商业FO膜的选择性普遍不高,导致汲取液的污染和垃圾渗滤液处理过程效率的下降,关于如何有效控制膜的选择性问题仍然需要关注。期待随着研究的不断深入,最大程度发挥出FO的优势,为垃圾渗滤液处理行业可持续发展提供有效途径。
中图分类号:
蒋兰英, 李振, 陈聪. 正渗透处理垃圾渗滤液的研究及工程实践进展[J]. 化工进展, 2024, 43(11): 6443-6457.
JIANG Lanying, LI Zhen, CHEN Cong. Research and application progress of landfill leachate treatment by forward osmosis[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6443-6457.
企业(地区) | 膜(组件)产品 | 主要工艺 | ||||
---|---|---|---|---|---|---|
商品名(其他信息) | 水通量 /L·m-2·h-1 | 截盐率 /% | 发展现状 | 商品名或主要技术组成 | 适用范围 | |
吾净科技(中国深圳)[ | (两性复合TFC) | 1~100 | — | 研发阶段 | — | — |
杭州水管家环保科技 (中国)[ | (TFC、PA) | 15.0 | 99.4 | 研发阶段 | — | — |
苏州普希环保(中国)[ | (TFC、PA) | 15.0 | 99.4 | 研发阶段 | — | — |
富优特新材料 (中国山东)[ | (TFC、PA) | — | — | 研发阶段 | — | — |
久吾高科(中国) | BW系列(SW、TFC、CTA/PA) | — | — | 研发阶段 | — | 污水处理、海水淡化 |
HTI(美国)[ | OsMem™(准对称/TFC、FS、CTA) | 3.67 | 92.68 | — | FO-RO | 垃圾渗滤液处理 |
Oasys Water(美国)[ | (TFC、PA) | 12.43 | 94.25 | 已商业化量产 | MBC™ | 海水淡化、废水处理 |
Fluid Technology Solutions(美国)[ | OsmoF₂O™(FS、SW、CTA) | 3.85 | 99.9 | 已商业化量产 | OsmoBC™ | 食品和饮料加工、工业 废水处理 |
Koch Membrane Systems (美国)[ | KSS TidallTM(HF、PA) | — | — | 已商业化量产 | — | 厌氧废水处理、食品饮料加工 |
Aquaporin A/S(丹麦)[ | Aquaporin Inside® HFFO(HF) | 11±1.5 | 99.3~99.6 | 已商业化量产 | — | 海水淡化、废水处理 |
Toyobo(日本)[ | HOLLOSEP® (HF、CTA) | — | — | 已商业化量产 | — | — |
Porifera(美国)[ | PFO-9S(PF) | 7.78~9.68 | 93.2~97.7 | 已商业化量产 | DprShield | 海水淡化和废水处理 |
BLUE-tec(荷兰)[ | — | — | — | — | FO-BWRO/SWRO/HBRO/MD | 海水淡化 |
Ederna(法国)[ | — | — | — | — | evapEOs® | 咖啡、食品和饮料加工 |
Trevi systems(美国)[ | — | — | — | — | RO-FO-heater-UF | 海水淡化、城市废水处理 |
Modern Water(英国)[ | — | — | — | — | FO-RO | 海水淡化、工业废水处理 |
Benit M(韩国)[ | — | — | — | — | FO-MD | 工业废水处理、海水淡化 |
GreenPebble Technologies(印度) | — | — | — | — | FO-RO/NF/MD | 工业废水处理、海水淡化 |
Goldfinch Engineering Systems(印度)[ | — | — | — | — | FO-RO | 废水预浓缩、食品饮料 加工 |
Tritech(新加坡)[ | (TFC、PA) | 15.23 | 99.87 | 研发阶段 | — | — |
De.mem (新加坡) | (HF) | — | — | 研发阶段 | — | 工业废水处理、饮料加工 |
Osmotic Engineering(英国) | — | — | — | — | FO-汲取液再生 | 垃圾渗滤液处理、海水 淡化 |
表1 国内外 FO企业的主要膜产品和主要工艺信息概览
企业(地区) | 膜(组件)产品 | 主要工艺 | ||||
---|---|---|---|---|---|---|
商品名(其他信息) | 水通量 /L·m-2·h-1 | 截盐率 /% | 发展现状 | 商品名或主要技术组成 | 适用范围 | |
吾净科技(中国深圳)[ | (两性复合TFC) | 1~100 | — | 研发阶段 | — | — |
杭州水管家环保科技 (中国)[ | (TFC、PA) | 15.0 | 99.4 | 研发阶段 | — | — |
苏州普希环保(中国)[ | (TFC、PA) | 15.0 | 99.4 | 研发阶段 | — | — |
富优特新材料 (中国山东)[ | (TFC、PA) | — | — | 研发阶段 | — | — |
久吾高科(中国) | BW系列(SW、TFC、CTA/PA) | — | — | 研发阶段 | — | 污水处理、海水淡化 |
HTI(美国)[ | OsMem™(准对称/TFC、FS、CTA) | 3.67 | 92.68 | — | FO-RO | 垃圾渗滤液处理 |
Oasys Water(美国)[ | (TFC、PA) | 12.43 | 94.25 | 已商业化量产 | MBC™ | 海水淡化、废水处理 |
Fluid Technology Solutions(美国)[ | OsmoF₂O™(FS、SW、CTA) | 3.85 | 99.9 | 已商业化量产 | OsmoBC™ | 食品和饮料加工、工业 废水处理 |
Koch Membrane Systems (美国)[ | KSS TidallTM(HF、PA) | — | — | 已商业化量产 | — | 厌氧废水处理、食品饮料加工 |
Aquaporin A/S(丹麦)[ | Aquaporin Inside® HFFO(HF) | 11±1.5 | 99.3~99.6 | 已商业化量产 | — | 海水淡化、废水处理 |
Toyobo(日本)[ | HOLLOSEP® (HF、CTA) | — | — | 已商业化量产 | — | — |
Porifera(美国)[ | PFO-9S(PF) | 7.78~9.68 | 93.2~97.7 | 已商业化量产 | DprShield | 海水淡化和废水处理 |
BLUE-tec(荷兰)[ | — | — | — | — | FO-BWRO/SWRO/HBRO/MD | 海水淡化 |
Ederna(法国)[ | — | — | — | — | evapEOs® | 咖啡、食品和饮料加工 |
Trevi systems(美国)[ | — | — | — | — | RO-FO-heater-UF | 海水淡化、城市废水处理 |
Modern Water(英国)[ | — | — | — | — | FO-RO | 海水淡化、工业废水处理 |
Benit M(韩国)[ | — | — | — | — | FO-MD | 工业废水处理、海水淡化 |
GreenPebble Technologies(印度) | — | — | — | — | FO-RO/NF/MD | 工业废水处理、海水淡化 |
Goldfinch Engineering Systems(印度)[ | — | — | — | — | FO-RO | 废水预浓缩、食品饮料 加工 |
Tritech(新加坡)[ | (TFC、PA) | 15.23 | 99.87 | 研发阶段 | — | — |
De.mem (新加坡) | (HF) | — | — | 研发阶段 | — | 工业废水处理、饮料加工 |
Osmotic Engineering(英国) | — | — | — | — | FO-汲取液再生 | 垃圾渗滤液处理、海水 淡化 |
膜系统 | 价格 | 运营成本/USD·m-3 |
---|---|---|
FO膜组件 | 1100USD/个,3年寿命 | 1.60 |
盐酸 | 300USD/t | 0.05 |
FO电力 | 0.1USD/kWh | 1.00 |
NaCl | 60USD/t | 0.05 |
RO膜组件 | 800UDS/个,3年寿命 | 0.40 |
RO电力 | 0.1USD/kWh | 0.90 |
总计 | 4.00 |
表2 膜系统运营细分成本[97]
膜系统 | 价格 | 运营成本/USD·m-3 |
---|---|---|
FO膜组件 | 1100USD/个,3年寿命 | 1.60 |
盐酸 | 300USD/t | 0.05 |
FO电力 | 0.1USD/kWh | 1.00 |
NaCl | 60USD/t | 0.05 |
RO膜组件 | 800UDS/个,3年寿命 | 0.40 |
RO电力 | 0.1USD/kWh | 0.90 |
总计 | 4.00 |
处置方式 | 运营成本/EUR·m-3 |
---|---|
脱氮好氧工艺 | 15.00 |
两级RO | 7.50 |
生物处理+活性炭+沉淀 | 18.75~26.25 |
生物处理+RO+蒸发浓缩 | 26.25~30.00 |
太阳能蒸发+FO | 4.75 |
表3 不同处置方式的单位运营成本[101]
处置方式 | 运营成本/EUR·m-3 |
---|---|
脱氮好氧工艺 | 15.00 |
两级RO | 7.50 |
生物处理+活性炭+沉淀 | 18.75~26.25 |
生物处理+RO+蒸发浓缩 | 26.25~30.00 |
太阳能蒸发+FO | 4.75 |
1 | 丁晶, 关淑妍, 赵庆良, 等. 垃圾渗滤液膜滤浓缩液处理技术研究与应用进展[J]. 哈尔滨工业大学学报, 2021, 53(11): 1-13. |
DING Jing, GUAN Shuyan, ZHAO Qingliang, et al. Research and application status of treatment methods of landfill leachate membrane concentrate[J]. Journal of Harbin Institute of Technology, 2021, 53(11): 1-13. | |
2 | KARGI Fikret, Yunus PAMUKOGLU M. Aerobic biological treatment of pre-treated landfill leachate by fed-batch operation[J]. Enzyme and Microbial Technology, 2003, 33(5): 588-595. |
3 | 王锐, 刘宪华, 王勇, 等. Fenton氧化处理难降解有机废水研究进展[J]. 工业水处理, 2022, 42(5): 58-66. |
WANG Rui, LIU Xianhua, WANG Yong, et al. Research progress of Fenton oxidation treatment refractory organic wastewater[J]. Industrial Water Treatment, 2022, 42(5): 58-66. | |
4 | HE Shilong, ZHANG Yu, YANG Min, et al. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate[J]. Chemosphere, 2007, 66(11): 2233-2238. |
5 | 张雪, 乔雪姣, 苏佳, 等. 垃圾渗滤液处理厂活性污泥微生物种群结构和功能分析[J]. 北京大学学报(自然科学版), 2021, 57(5): 927-937. |
ZHANG Xue, QIAO Xuejiao, SU Jia, et al. Microbial structure and function of activated sludge in landfill leachate treatment plant[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(5): 927-937. | |
6 | 赵书威, 何涛, 李雪梅, 等. 国际正渗透膜技术研讨会IFOS2016回顾: 正渗透可行吗?[J]. 化工学报, 2018, 69(4): 1255-1260. |
ZHAO Shuwei, HE Tao, LI Xuemei, et al. Highlights of international forward osmosis technology symposium(IFOS2016): Is forward osmosis feasible?[J]. CIESC Journal, 2018, 69(4): 1255-1260. | |
7 | 王涛, 王宁, 陆金仁, 等. 正渗透膜污染特征及抗污染正渗透膜研究进展[J]. 膜科学与技术, 2017, 37(1): 125-132. |
WANG Tao, WANG Ning, LU Jinren, et al. Fouling characteristics of forward osmosis membrane and recent development of antifouling forward osmosis membrane[J]. Membrane Science and Technology, 2017, 37(1): 125-132. | |
8 | JIANG Lanying, LI Na. Membrane-based separations in metallurgy: Principles and applications[M]. Amsterdam, Netherlands: Elsevier, 2017. |
9 | PATEL Dhaval, MUDGAL Anurag, PATEL Vivek, et al. Energy, exergy, economic and environment analysis of standalone forward osmosis (FO) system for domestic wastewater treatment[J]. Desalination, 2023, 567: 116995. |
10 | CHUN Youngpil, ZAVISKA François, KIM Sung-Jo, et al. Fouling characteristics and their implications on cleaning of a FO-RO pilot process for treating brackish surface water[J]. Desalination, 2016, 394: 91-100. |
11 | Emily W TOW, WARSINGER David M, TRUEWORTHY Ali M, et al. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation[J]. Journal of Membrane Science, 2018, 556: 352-364. |
12 | PAZOUKI P, SIDHU J P S, IPE D S, et al. Seawater dilution desalination with hybrid FO-RO and UF-RO: Characterisation and assessment of pathogen removal efficacy[J]. Desalination, 2022, 525: 115509. |
13 | 李刚, 李雪梅, 柳越, 等. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(5): 812-821. |
LI Gang, LI Xuemei, LIU Yue, et al. Forward osmosis and concentration polarization[J]. Progress in Chemistry, 2010, 22(5): 812-821. | |
14 | CATH Tzahi Y, CHILDRESS Amy E, ELIMELECH Menachem. Forward osmosis: Principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87. |
15 | WEN Hui, LIU Changkun. Effect of the interlayer construction on the performances of the TFC-FO membranes: A review from materials perspective[J]. Desalination, 2022, 541: 116033. |
16 | MCCUTCHEON Jeffrey R, MCGINNIS Robert L, ELIMELECH Menachem. A novel ammonia—Carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1): 1-11. |
17 | PENDERGAST MaryTheresa M, NOWOSIELSKI-SLEPOWRON Marek S, TRACY John. Going big with forward osmosis[J]. Desalination and Water Treatment, 2016, 57(55): 26529-26538. |
18 | REN Jian, MCCUTCHEON Jeffrey R. A new commercial thin film composite membrane for forward osmosis[J]. Desalination, 2014, 343: 187-193. |
19 | 高云霄. 两种商品化正渗透膜性能对比试验研究[J]. 技术与市场, 2022, 29(9): 108-111. |
GAO Yunxiao. Comparative experimental study on properties of two commercial forward osmosis membranes[J]. Technology and Market, 2022, 29(9): 108-111. | |
20 | YANG Zhe, SUN Pengfei, LI Xianhui, et al. A critical review on thin-film nanocomposite membranes with interlayered structure: Mechanisms, recent developments, and environmental applications[J]. Environmental Science & Technology, 2020, 54(24): 15563-15583. |
21 | JAIN Harshita, GARG Manoj Chandra. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review[J]. Environmental Technology & Innovation, 2021, 23: 101561. |
22 | GIAGNORIO Mattia, TANIS Begüm, Claus HÉLIX-NIELSEN, et al. Influence of porous support structure and the possible presence of active layer defects on FO membrane behaviour[J]. Separation and Purification Technology, 2024, 330: 125182. |
23 | LIANG Hongqing, HUNG Wei-Song, YU Haohao, et al. Forward osmosis membranes with unprecedented water flux[J]. Journal of Membrane Science, 2017, 529: 47-54. |
24 | BAI Hao, CHEN Yuan, DELATTRE Benjamin, et al. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J]. Science Advances, 2015, 1(11): e1500849. |
25 | LEE Jaewoo, Yu Jie LIM, Jiun Hui LOW, et al. Synergistic effect of highly porous microstructured support and co-solvent assisted interfacial polymerization on the performance of thin-film composite FO membranes[J]. Desalination, 2022, 539: 115947. |
26 | TANG Yuanyuan, LI Shan, XU Jia, et al. Thin film composite forward osmosis membrane with single-walled carbon nanotubes interlayer for alleviating internal concentration polarization[J]. Polymers, 2020, 12(2): 260. |
27 | CHOI Hyeon-gyu, SHAH Aatif ALI, Seung-Eun NAM, et al. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis[J]. Desalination, 2019, 449: 41-49. |
28 | WENTEN I G, KHOIRUDDIN K, REYNARD R, et al. Advancement of forward osmosis (FO) membrane for fruit juice concentration[J]. Journal of Food Engineering, 2021, 290: 110216. |
29 | SANTOS Catherine M, MANGADLAO Joey, AHMED Farid, et al. Graphene nanocomposite for biomedical applications: Fabrication, antimicrobial and cytotoxic investigations[J]. Nanotechnology, 2012, 23(39): 395101. |
30 | DEKA Priyamjeet, VERMA Vishal Kumar, CHANDRASEKARAN Arunkumar, et al. Performance of novel sericin doped reduced graphene oxide membrane for FO based membrane crystallization application[J]. Journal of Membrane Science, 2022, 660: 120884. |
31 | MA Mingcai, LU Xiaofeng, GUO Yong, et al. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116741. |
32 | WANG Yi, SMITH Stefan J D, LIU Yue, et al. Surface hydrophilicity modification of thin-film composite membranes with metal-organic frameworks (MOFs) Ti-UiO-66 for simultaneous enhancement of anti-fouling property and desalination performance[J]. Separation and Purification Technology, 2022, 302: 122001. |
33 | HE Yasan, LIN Xiaogeng, CHEN Jianhua, et al. Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer[J]. Journal of Membrane Science, 2021, 635: 119476. |
34 | SONG Xiangju, ZHANG Yajing, ABDEL-GHAFAR Hamdy Maamoun, et al. Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis[J]. Chemical Engineering Journal, 2021, 412: 128607. |
35 | HU Yang, ZHAO Pin, LIU Hao, et al. Photocatalytic thin film composite forward osmosis membrane for mitigating organic fouling in active layer facing draw solution mode[J]. Chinese Chemical Letters, 2023, 34(6): 107931. |
36 | XU Xiaotong, ZHANG Hanmin, YU Mingchuan, et al. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control[J]. Science of the Total Environment, 2019, 697: 134050. |
37 | MOHAN Pradeep, SASIKUMAR B, S A Gokula KRISHNAN, et al. Covalent-organic porous framework (COF) integrated hybrid membranes for energy and environmental applications: Current and future perspectives[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023: 105067. |
38 | 詹小平, 秦金莹, 曹高娟, 等. 金属有机框架基抗菌材料的应用研究与展望[J]. 武夷科学, 2022, 38(2): 81-98. |
ZHAN Xiaoping, QIN Jinying, CAO Gaojuan, et al. Application and prospect of metal-organic frameworks based antibacterial materials[J]. Wuyi Science Journal, 2022, 38(2): 81-98. | |
39 | 李轻轻, 马伟芳, 聂超, 等. 正渗透汲取液类型及分离回收工艺研究进展[J]. 环境工程, 2016, 34(3): 11-17. |
LI Qingqing, MA Weifang, NIE Chao, et al. Draw solution for forward osmosis processes: Types, separation and recovery process[J]. Environmental Engineering, 2016, 34(3): 11-17. | |
40 | HAMAD Mohammed J A, CHIRWA Evans M N. Forward osmosis for water recovery using polyelectrolyte PolyDADMAC and DADMAC draw solutions as a low pressure energy saving process[J]. Desalination, 2019, 453: 89-101. |
41 | LING Mingming, WANG Kaiyu, CHUNG Tai-Shung. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse[J]. Industrial & Engineering Chemistry Research, 2010, 49(12): 5869-5876. |
42 | MA Dongze, TIAN Ye, HE Tiefei, et al. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination[J]. Chinese Journal of Chemical Engineering, 2022, 46: 223-230. |
43 | Wei Jiun LIM, Boon Seng OOI. Applications of responsive hydrogel to enhance the water recovery via membrane distillation and forward osmosis: A review[J]. Journal of Water Process Engineering, 2022, 47: 102828. |
44 | GUPTA Nupur, LIANG Yen Nan, HU Xiao. Thermally responsive ionic liquids and polymeric ionic liquids: Emerging trends and possibilities[J]. Current Opinion in Chemical Engineering, 2019, 25: 43-50. |
45 | PEI Yuanchao, ZHANG Yaxin, MA Jie, et al. Ionic liquids for advanced materials[J]. Materials Today Nano, 2022, 17: 100159. |
46 | ZHONG Yujiang, FENG Xiaoshuang, CHEN Wei, et al. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water[J]. Environmental Science & Technology, 2016, 50(2): 1039-1045. |
47 | 程梁, 赵瑞, 吴贵莎. 一种两性复合正渗透膜及其制备方法和应用: CN110841494A[P]. 2020-02-28. |
CHENG Liang, ZHAO Rui, WU Guisha. Amphoteric composite forward osmosis membrane as well as preparation method and application thereof: CN110841494A[P]. 2020-02-28. | |
48 | 延怀军, 彭玉忠. 一种水处理用聚酰胺正渗透膜: CN108339403B[P]. 2019-12-03. |
YAN Huaijun, PENG Yuzhong. Polyamide forward osmosis membrane for water treatment: CN108339403B[P]. 2019-12-03. | |
49 | 苏州普希环保科技有限公司. 一种废水脱盐用聚酰胺复合正渗透膜: CN108126537B[P]. 2020-03-06. |
Suzhou Puxi Environmental Protection Technology Company Limited. Polyamide compound positive osmotic membrane for desalting wastewater: CN108126537B[P]. 2020-03-06. | |
50 | 王新波, 李开明, 郭逸. 可溶性、低温快速酰亚胺化聚酰亚胺薄膜的制备方法: CN113968971B[P]. 2022-05-27. |
WANG Xinbo, LI Kaiming, GUO Yi. Preparation method of soluble low-temperature rapid imidization polyimide film: CN113968971B[P]. 2022-05-27. | |
51 | REN Jian, MCCUTCHEON Jeffrey R. Making thin film composite hollow fiber forward osmosis membranes at the module scale using commercial ultrafiltration membranes[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 4074-4082. |
52 | NDIAYE Issa, VAUDREUIL Sébastien, BOUNAHMIDI Tijani. Forward osmosis process: State-of-the-art of membranes[J]. Separation & Purification Reviews, 2021, 50(1): 53-73. |
53 | SUWAILEH Wafa, PATHAK Nirenkumar, SHON Hokyong, et al. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook[J]. Desalination, 2020, 485: 114455. |
54 | 段伟, 王效宁, 蔡军刚. 螺旋型薄膜元件及其制备方法: CN103143259B[P]. 2014-10-29. |
DUAN Wei, WANG Xiaoning, CAI Jungang. Spiral thin film element and preparation method thereof: CN103143259B[P]. 2014-10-29. | |
55 | world Water. Forward osmosis: Is it beginning to live up to the hype?[EB/OL]. (2017-07-02) [2023-10-24]. . |
56 | TANG Kai, XIE Jiawei, PAN Yuwei, et al. The optimization and regulation of energy consumption for MBR process: A critical review[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108406. |
57 | CAMPAGNA Marco, Mehmet ÇAKMAKCı, BÜŞRA YAMAN F, et al. Molecular weight distribution of a full-scale landfill leachate treatment by membrane bioreactor and nanofiltration membrane[J]. Waste Management, 2013, 33(4): 866-870. |
58 | DONG Ying, WANG Zhiwei, ZHU Chaowei, et al. A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate[J]. Journal of Membrane Science, 2014, 471: 192-200. |
59 | CINGOLANI Diego, EUSEBI Anna Laura, BATTISTONI Paolo. Osmosis process for leachate treatment in industrial platform: Economic and performances evaluations to zero liquid discharge[J]. Journal of Environmental Management, 2017, 203: 782-790. |
60 | DENG Yang, ENGLEHARDT James D. Treatment of landfill leachate by the Fenton process[J]. Water Research, 2006, 40(20): 3683-3694. |
61 | JUNG Chanil, DENG Yang, ZHAO Renzun, et al. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation[J]. Water Research, 2017, 108: 260-270. |
62 | ISKANDER Syeed Md, NOVAK John T, HE Zhen. Reduction of reagent requirements and sludge generation in Fenton’s oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery[J]. Water Research, 2019, 151: 310-317. |
63 | 孙运健. Fenton-膜吸收-正渗透组合工艺处理垃圾渗滤液的效能研究[D]. 无锡: 江南大学, 2022. |
SUN Yunjian. Application of a combined process of Fenton-membrane absorption method-forward osmosisfor treating landfill leachate[D]. Wuxi: Jiangnan University, 2022. | |
64 | AFTAB Bilal, CHO Jinwoo, Jin HUR. UV/H2O2-assisted forward osmosis system for extended filtration, alleviated fouling, and low-strength landfill leachate concentrate[J]. Journal of Membrane Science, 2021, 623: 119055. |
65 | SHU Hung-Yee, FAN Hung-Jung, CHANG Ming-Chin, et al. Treatment of MSW landfill leachate by a thin gap annular UV/H2O2 photoreactor with multi-UV lamps[J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 73-79. |
66 | WAN Ying, XIE Pengchao, WANG Zongping, et al. Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling[J]. Water Research, 2019, 158: 213-226. |
67 | ZHANG Xiaolei, FAN Linhua, RODDICK Felicity A. Effect of feedwater pre-treatment using UV/H2O2 for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter[J]. Journal of Membrane Science, 2015, 493: 683-689. |
68 | YUAN Heyang, HE Zhen. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review[J]. Bioresource Technology, 2015, 195: 202-209. |
69 | MAHMOUD Mohamed, PARAMESWARAN Prathap, TORRES César I, et al. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell[J]. Bioresource Technology, 2014, 151: 151-158. |
70 | ZHANG Fei, BRASTAD Kristen S, HE Zhen. Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation[J]. Environmental Science & Technology, 2011, 45(15): 6690-6696 |
71 | GE Zheng, PING Qingyun, XIAO Li, et al. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater[J]. Desalination, 2013, 312: 52-59. |
72 | SIBI Reiva, SHEELAM Anjaiah, GUNASEELAN K, et al. Osmotic microbial fuel cell for sustainable wastewater treatment along with desalination, bio-energy and resource recovery: A critical review[J]. Bioresource Technology Reports, 2023, 23: 101540. |
73 | 黄丽, 黄满红, 陈亮, 等. 正渗透微生物燃料电池处理垃圾渗滤液的产能和降污性能研究[J]. 水处理技术, 2018, 44(1): 30-32, 37. |
HUANG Li, HUANG Manhong, CHEN Liang, et al. Study on the production capacity and pollution reduction performance of landfill leachate treatment by osmosis microbial fuel cell[J]. Technology of Water Treatment, 2018, 44(1): 30-32, 37. | |
74 | JIANG Nan, HUANG Li, HUANG Manhong, et al. Electricity generation and pollutants removal of landfill leachate by osmotic microbial fuel cells with different forward osmosis membranes[J]. Sustainable Environment Research, 2021, 31(1): 22. |
75 | ISKANDER Syeed Md, BRAZIL Brian, NOVAK John T, et al. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives[J]. Bioresource Technology, 2016, 201: 347-354. |
76 | QIN Mohan, MOLITOR Hannah, BRAZIL Brian, et al. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system[J]. Bioresource Technology, 2016, 200: 485-492. |
77 | CAO Yujin, MU Hui, LIU Wei, et al. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities[J]. Microbial Cell Factories, 2019, 18(1): 39. |
78 | TAWALBEH Muhammad, Amani AL-OTHMAN, SINGH Karnail, et al. Microbial desalination cells for water purification and power generation: A critical review[J]. Energy, 2020, 209: 118493. |
79 | ISKANDER Syeed Md, NOVAK John T, HE Zhen. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell[J]. Bioresource Technology, 2018, 255: 76-82. |
80 | AFTAB Bilal, CHO Jinwoo, Jin HUR. Intermittent osmotic relaxation: A strategy for organic fouling mitigation in a forward osmosis system treating landfill leachate[J]. Desalination, 2020, 482: 114406. |
81 | ZHANG Jiaojiao, WANG Dong, CHEN Yue, et al. Scaling control of forward osmosis-membrane distillation (FO-MD) integrated process for pre-treated landfill leachate treatment[J]. Desalination, 2021, 520: 115342. |
82 | IBRAR Ibrar, YADAV Sudesh, ALTAEE Ali, et al. Sodium docusate as a cleaning agent for forward osmosis membranes fouled by landfill leachate wastewater[J]. Chemosphere, 2022, 308(2): 136237. |
83 | AFTAB Bilal, Yong Sik OK, CHO Jinwoo, et al. Targeted removal of organic foulants in landfill leachate in forward osmosis system integrated with biochar/activated carbon treatment[J]. Water Research, 2019, 160: 217-227. |
84 | LI Jing, NIU Aping, LU Chunjiao, et al. A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation[J]. Chemosphere, 2017, 168: 112-121. |
85 | NIU Aping, REN Yiwei, YANG Li, et al. Toxicological characterization of a novel wastewater treatment process using EDTA-Na2Zn as draw solution (DS) for the efficient treatment of MBR-treated landfill leachate[J]. Chemosphere, 2016, 155: 100-108. |
86 | MONJEZI Alireza Abbassi. Apparatus and method for liquid treatment by forward osmosis: US20230071602[P]. 2023-03-09. |
87 | SIEKIERKA Anna, YALCINKAYA Fatma. Selective cobalt-exchange membranes for electrodialysis dedicated for cobalt recovery from lithium, cobalt and nickel solutions[J]. Separation and Purification Technology, 2022, 299: 121695. |
88 | SBARDELLA Luca, BLANDIN Gaetan, Ariadna FÀBREGAS, et al. Optimization of pilot scale forward osmosis process integrated with electrodialysis to concentrate landfill leachate[J]. Chemical Engineering Journal, 2022, 434: 134448. |
89 | LAWSON Kevin W, LLOYD Douglas R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-25. |
90 | HUSNAIN Taqsim, LIU Yaolin, RIFFAT Rumana, et al. Integration of forward osmosis and membrane distillation for sustainable wastewater reuse[J]. Separation and Purification Technology, 2015, 156: 424-431. |
91 | ZHOU Yingru, HUANG Manhong, DENG Qian, et al. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate[J]. Desalination, 2017, 420: 99-105. |
92 | WU Simiao, ZOU Shiqiang, LIANG Guannan, et al. Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis[J]. Science of the Total Environment, 2018, 610/611: 137-146. |
93 | HUANG Haiming, XIAO Dean, ZHANG Qingrui, et al. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources[J]. Journal of Environmental Management, 2014, 145: 191-198. |
94 | ISKANDER Syeed Md, ZOU Shiqiang, BRAZIL Brian, et al. Energy consumption by forward osmosis treatment of landfill leachate for water recovery[J]. Waste Management, 2017, 63: 284-291. |
95 | YORK R J, THIEL R S, BEAUDRY E G. Full-scale experience of direct osmosis concentration applied to leachate management[A]. International Waste Management and Landfill Symposium, 1999: 359-366. |
96 | National Aeronautics and Space Administration. Cleaner Landfills[EB/OL]. (2000) [2023-10-24]. . |
97 | LAMPI Keith, SHETHJI Jayrai. Forward osmosis industrial wastewater treatment: Landfill leachate and oil and gas produced waters[A]. International Forward Osmosis Association At: Lisbon, Portuga, 2014. |
98 | FTS H2O Fluid Technology Solutions. OsmoBCTM forward osmosis process for landfill leachate effluent treatment[EB/OL]. (2018-06) [2023-10-24]. . |
99 | 中国膜工业协会. 上海缘脉为国内引进美国“FO-HBCR全膜正渗透技术”[EB/OL]. (2018-08-14) [2023-10-24]. . |
China Membrane Industry Association. Shanghai Yuanmai has introduced the American “FO-HBCR full membrane forward osmosis technology” to China[EB/OL]. (2018-08-14)[2023-10-24]. . | |
100 | MARTIN Jesús, CORONA Francisco, HIDALGO Dolores. Low energy technology for leachate valorisation[J]. World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering, 2017, 11: 583-586. |
101 | GIRALDO Eugenio. Tratamiento de lixiviados de rellenos sanitarios: Avances recientes[J]. Revista De Ingeniería, 2001(14): 44-55. |
102 | 中国膜工业协会. 首套正渗透垃圾渗滤液处理设备在秦皇岛海绵科技下线[EB/OL]. (2017-09-19) [2023-10-24]. . |
China Membrane Industry Association. The first set of forward osmosis garbage leachate treatment equipment was offline at Qinhuangdao Sponge Technology[EB/OL]. (2017-09-19) [2023-10-24]. . | |
103 | 张若砺. 正渗透和反渗透耦合系统处理垃圾渗滤液DTRO浓缩液的中试研究与工程应用[D]. 无锡: 江南大学, 2021. |
ZHANG Ruoli. Study and engineering application of an integrated system of forward osmosis and reverse osmosis for treating DTRO concentrate of the landfill leachate[D]. Wuxi: Jiangnan University, 2021. | |
104 | 中国膜工业协会. 上拓环境独创FMBC新型垃圾渗滤液处理系统中试获成功[EB/OL]. (2019-04-29) [2023-10-24]. . |
China Membrane Industry Association. Shangtuo Environment’s innovation FMBC new landfill leachate treatment system has achieved successful pilot testing[EB/OL]. (2019-04-29) [2023-10-24]. . | |
105 | 中国膜工业协会. 陕西环保集团正渗透处理垃圾渗滤液中试取得重大进展[EB/OL]. (2019-06-21) [2023-10-24]. . |
China Membrane Industry Association. Significant progress has been made in the pilot test of Shaanxi Environmental Protection Group’s forward osmosis treatment of leachate from garbage[EB/OL]. (2019-06-21) [2023-10-24]. . | |
106 | 郑伟, 金晶, 王清森, 等. 生活垃圾填埋场渗透液全景化处理工艺设计及应用[J]. 绿色科技, 2024, 26(6): 181-185. |
ZHENG Wei, JIN Jing, WANG Qingsen, et al. Design and case analysis of fully quantitative treatment process for leachate from a domestic waste landfill[J]. Journal of Green Science and Technology, 2024, 26(6): 181-185. |
[1] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
[2] | 林明杰, 李士洋, 马俊梅, 高从堦, 薛立新. 聚酰胺/醋酸纤维素复合正渗透膜的制备及相转化工艺参数的优化[J]. 化工进展, 2024, 43(3): 1418-1427. |
[3] | 谷凯, 吴寅凯, 尹俊权, 李卫华, 孙英杰, 张庆建, 葛燕辰, 何依洋, 赵灵燕, 王华伟. 多元浸沥场景下固化/稳定飞灰中重金属浸出行为[J]. 化工进展, 2023, 42(11): 6113-6125. |
[4] | 刘翔, 何林, 从海峰, 隋红, 李鑫钢. 双胺“可逆”溶剂强化正渗透脱盐及过程优化[J]. 化工进展, 2022, 41(11): 6158-6166. |
[5] | 付成林, 伍永钢, 胡谦, 程玉虎. 负载两种不同电极材料MEC处理实际垃圾渗滤液的运行特性[J]. 化工进展, 2021, 40(S2): 402-410. |
[6] | 徐世昌, 崔兰英, 解利昕, 宿立波. 蒸发气相吸收耦合方法处理垃圾渗滤液[J]. 化工进展, 2021, 40(5): 2852-2858. |
[7] | 朱腾义, 曹再植. 正渗透-膜蒸馏耦合工艺在高难度废水处理中的应用研究进展[J]. 化工进展, 2021, 40(11): 5894-5906. |
[8] | 罗方, 王晶, 姚之侃, 张林, 陈欢林. 正渗透膜特征参数测试方法研究进展[J]. 化工进展, 2021, 40(1): 31-38. |
[9] | 汤依莲, 李士洋, 孙志娟, 高从堦, 薛立新. 具有三维聚酰胺脱盐网络结构的无纺布复合正渗透膜[J]. 化工进展, 2020, 39(12): 5170-5181. |
[10] | 方丽瑶,吕慧,付佳蓓,左浩然,刘慧清,曹贵平. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692. |
[11] | 夏珺, 蔡一地, 张俊丰, 黄妍. 高温烟气蒸发垃圾渗滤液膜浓缩液的挥发性有机物[J]. 化工进展, 2019, 38(05): 2845-2490. |
[12] | 肖芹芹, 徐世昌, 王越, 王红柳. 正渗透膜污染影响因素的研究与分析[J]. 化工进展, 2018, 37(01): 359-367. |
[13] | 胡念, 左浩然, 付佳蓓, 吕慧, 童奕皓, 刘慧清, 曹贵平. 石墨烯掺杂聚砜基正渗透膜的结构和性能[J]. 化工进展, 2017, 36(12): 4524-4532. |
[14] | 高婷婷, 解利昕, 徐世昌, 冯丽媛, 杜亚威, 周晓凯. 碳酸氢铵为汲取液正渗透海水淡化研究[J]. 化工进展, 2017, 36(06): 2051-2056. |
[15] | 谢朋, 张忠国, 孙涛, 吴月, 吴秋燕, 李继定, 李珊. 正渗透过程中汲取质反向渗透研究进展[J]. 化工进展, 2015, 34(10): 3540-3550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |