化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5642-5652.DOI: 10.16085/j.issn.1000-6613.2023-1566
• 材料科学与技术 • 上一篇
张妍1,2,3(), 乔文朴1, 黄靖钧1, 孙鑫娣1, 刘忠3, 吴海标2
收稿日期:
2023-09-06
修回日期:
2023-10-20
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
张妍
作者简介:
张妍(1989—),女,博士,讲师,研究方向为材料科学与技术、特种纸基功能材料。E-mail:15122753563@163.com。
基金资助:
ZHANG Yan1,2,3(), QIAO Wenpu1, HUANG Jingjun1, SUN Xindi1, LIU Zhong3, WU Haibiao2
Received:
2023-09-06
Revised:
2023-10-20
Online:
2024-10-15
Published:
2024-10-29
Contact:
ZHANG Yan
摘要:
采用乳液法制备二氧化钛(TiO2)/滑石粉复合填料,并将其应用在装饰原纸中。结合油包水型(W/O)乳液的拟三元相图,寻找合适的乳液体系,并利用响应曲面试验对TiO2/滑石粉复合填料的制备工艺进行优化。结果表明,环己烷比正庚烷更适合作为油相,正丁醇的用量影响着乳液的稳定性;复合填料制备的最优工艺为:Tween80/正丁醇的质量比为1∶1,乳化剂/环己烷的质量比为4∶6,水/环己烷的质量比为1∶3,滑石粉/钛酸四丁酯(TBT)质量比为1∶4,在此条件下制备的复合填料加填在装饰原纸中,得到的不透明度为97.0%,白度为84.0% ISO。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)及X射线衍射(XRD)分析方法对复合填料进行表征,结果显示,滑石粉表面包覆了一层致密均匀的TiO2,其晶型结构为锐钛矿型。
中图分类号:
张妍, 乔文朴, 黄靖钧, 孙鑫娣, 刘忠, 吴海标. 复合二氧化钛的制备及在装饰原纸中的应用[J]. 化工进展, 2024, 43(10): 5642-5652.
ZHANG Yan, QIAO Wenpu, HUANG Jingjun, SUN Xindi, LIU Zhong, WU Haibiao. Preparation of titanium dioxide/talc composite filler and its application in decorative base paper[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5642-5652.
配方 | Tween80∶正丁醇 | 乳化剂∶油相 | 水相∶油相 |
---|---|---|---|
a | 1∶1 | 2∶8 | 1∶4 |
b | 1∶1 | 4∶6 | 1∶2 |
c | 1∶1 | 5∶5 | 1∶2 |
d | 1∶1 | 7∶3 | 1∶3 |
e | 2∶1 | 4∶6 | 3∶5 |
f | 1∶2 | 4∶6 | 2∶3 |
表1 实验配方表(质量比)
配方 | Tween80∶正丁醇 | 乳化剂∶油相 | 水相∶油相 |
---|---|---|---|
a | 1∶1 | 2∶8 | 1∶4 |
b | 1∶1 | 4∶6 | 1∶2 |
c | 1∶1 | 5∶5 | 1∶2 |
d | 1∶1 | 7∶3 | 1∶3 |
e | 2∶1 | 4∶6 | 3∶5 |
f | 1∶2 | 4∶6 | 2∶3 |
水平 | 因素 | |||
---|---|---|---|---|
A(水相∶油相) | B(乳化剂∶油相) | C(Tween80∶正丁醇) | D(滑石粉∶TBT) | |
-1 | 1∶4 | 3∶7 | 1∶2 | 1∶5 |
0 | 1∶2 | 4∶6 | 1∶1 | 1∶4 |
1 | 3∶4 | 5∶5 | 2∶1 | 1∶3 |
表2 Box-Behnken试验设计因素与水平
水平 | 因素 | |||
---|---|---|---|---|
A(水相∶油相) | B(乳化剂∶油相) | C(Tween80∶正丁醇) | D(滑石粉∶TBT) | |
-1 | 1∶4 | 3∶7 | 1∶2 | 1∶5 |
0 | 1∶2 | 4∶6 | 1∶1 | 1∶4 |
1 | 3∶4 | 5∶5 | 2∶1 | 1∶3 |
乳化剂∶烷烃 | 体系中水的质量分数% | |
---|---|---|
环己烷 | 正庚烷 | |
1∶9 | 7.6 | 3.6 |
2∶8 | 16.0 | 11.8 |
3∶7 | 19.8 | 17.5 |
4∶6 | 25.9 | 19.0 |
5∶5 | 21.8 | 15.3 |
6∶4 | 18.6 | 13.4 |
7∶3 | 14.2 | 10.5 |
8∶2 | 11.1 | 10.1 |
9∶1 | 9.2 | 7.4 |
表3 乳化剂/烷烃的质量比对体系最大含水量的影响
乳化剂∶烷烃 | 体系中水的质量分数% | |
---|---|---|
环己烷 | 正庚烷 | |
1∶9 | 7.6 | 3.6 |
2∶8 | 16.0 | 11.8 |
3∶7 | 19.8 | 17.5 |
4∶6 | 25.9 | 19.0 |
5∶5 | 21.8 | 15.3 |
6∶4 | 18.6 | 13.4 |
7∶3 | 14.2 | 10.5 |
8∶2 | 11.1 | 10.1 |
9∶1 | 9.2 | 7.4 |
试验号 | 因素 | 不透明度 /% | 白度(ISO)/% | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
1 | 1∶2 | 4∶6 | 2∶1 | 1∶5 | 96.4 | 82.7 |
2 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.8 | 83.9 |
3 | 3∶4 | 5∶5 | 1∶1 | 1∶4 | 95.3 | 82.0 |
4 | 1∶4 | 4∶6 | 2∶1 | 1∶4 | 96.0 | 82.0 |
5 | 1∶4 | 5∶5 | 1∶1 | 1∶4 | 96.2 | 82.6 |
6 | 1∶2 | 5∶5 | 2∶1 | 1∶4 | 96.6 | 82.9 |
7 | 1∶4 | 3∶7 | 1∶1 | 1∶4 | 95.6 | 82.3 |
8 | 1∶4 | 4∶6 | 1∶1 | 1∶5 | 96.3 | 82.5 |
9 | 1∶2 | 5∶5 | 1∶1 | 1∶3 | 96.4 | 82.2 |
10 | 3∶4 | 4∶6 | 1∶1 | 1∶3 | 95.7 | 82.0 |
11 | 1∶2 | 4∶6 | 1∶2 | 1∶3 | 96.2 | 82.6 |
12 | 3∶4 | 4∶6 | 1∶2 | 1∶4 | 95.2 | 82.0 |
13 | 1∶4 | 4∶6 | 1∶1 | 1∶3 | 95.6 | 81.7 |
14 | 1∶2 | 5∶5 | 1∶1 | 1∶5 | 96.0 | 83.1 |
15 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.7 | 84.0 |
16 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 97.1 | 84.0 |
17 | 1∶2 | 3∶7 | 1∶1 | 1∶5 | 96.4 | 82.7 |
18 | 1∶2 | 4∶6 | 1∶2 | 1∶5 | 95.7 | 82.2 |
19 | 3∶4 | 3∶7 | 1∶1 | 1∶4 | 95.6 | 82.1 |
20 | 1∶2 | 3∶7 | 1∶1 | 1∶3 | 95.8 | 82.5 |
21 | 3∶4 | 4∶6 | 2∶1 | 1∶4 | 95.3 | 81.7 |
22 | 1∶2 | 4∶6 | 2∶1 | 1∶3 | 95.7 | 81.7 |
23 | 1∶2 | 3∶7 | 1∶2 | 1∶4 | 96.4 | 82.9 |
24 | 1∶4 | 4∶6 | 1∶2 | 1∶4 | 95.7 | 81.9 |
25 | 3∶4 | 4∶6 | 1∶1 | 1∶5 | 95.0 | 81.8 |
26 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.7 | 84.0 |
27 | 1∶2 | 3∶7 | 2∶1 | 1∶4 | 95.7 | 82.0 |
28 | 1∶2 | 5∶5 | 1∶2 | 1∶4 | 95.6 | 82.1 |
29 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.9 | 84.0 |
表4 响应曲面试验设计与结果
试验号 | 因素 | 不透明度 /% | 白度(ISO)/% | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
1 | 1∶2 | 4∶6 | 2∶1 | 1∶5 | 96.4 | 82.7 |
2 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.8 | 83.9 |
3 | 3∶4 | 5∶5 | 1∶1 | 1∶4 | 95.3 | 82.0 |
4 | 1∶4 | 4∶6 | 2∶1 | 1∶4 | 96.0 | 82.0 |
5 | 1∶4 | 5∶5 | 1∶1 | 1∶4 | 96.2 | 82.6 |
6 | 1∶2 | 5∶5 | 2∶1 | 1∶4 | 96.6 | 82.9 |
7 | 1∶4 | 3∶7 | 1∶1 | 1∶4 | 95.6 | 82.3 |
8 | 1∶4 | 4∶6 | 1∶1 | 1∶5 | 96.3 | 82.5 |
9 | 1∶2 | 5∶5 | 1∶1 | 1∶3 | 96.4 | 82.2 |
10 | 3∶4 | 4∶6 | 1∶1 | 1∶3 | 95.7 | 82.0 |
11 | 1∶2 | 4∶6 | 1∶2 | 1∶3 | 96.2 | 82.6 |
12 | 3∶4 | 4∶6 | 1∶2 | 1∶4 | 95.2 | 82.0 |
13 | 1∶4 | 4∶6 | 1∶1 | 1∶3 | 95.6 | 81.7 |
14 | 1∶2 | 5∶5 | 1∶1 | 1∶5 | 96.0 | 83.1 |
15 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.7 | 84.0 |
16 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 97.1 | 84.0 |
17 | 1∶2 | 3∶7 | 1∶1 | 1∶5 | 96.4 | 82.7 |
18 | 1∶2 | 4∶6 | 1∶2 | 1∶5 | 95.7 | 82.2 |
19 | 3∶4 | 3∶7 | 1∶1 | 1∶4 | 95.6 | 82.1 |
20 | 1∶2 | 3∶7 | 1∶1 | 1∶3 | 95.8 | 82.5 |
21 | 3∶4 | 4∶6 | 2∶1 | 1∶4 | 95.3 | 81.7 |
22 | 1∶2 | 4∶6 | 2∶1 | 1∶3 | 95.7 | 81.7 |
23 | 1∶2 | 3∶7 | 1∶2 | 1∶4 | 96.4 | 82.9 |
24 | 1∶4 | 4∶6 | 1∶2 | 1∶4 | 95.7 | 81.9 |
25 | 3∶4 | 4∶6 | 1∶1 | 1∶5 | 95.0 | 81.8 |
26 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.7 | 84.0 |
27 | 1∶2 | 3∶7 | 2∶1 | 1∶4 | 95.7 | 82.0 |
28 | 1∶2 | 5∶5 | 1∶2 | 1∶4 | 95.6 | 82.1 |
29 | 1∶2 | 4∶6 | 1∶1 | 1∶4 | 96.9 | 84.0 |
变异来源 | 平方和 | 自由度 | 均方差 | F | P | 显著性 |
---|---|---|---|---|---|---|
R2=0.9942 | Adjusted R2=0.9883 | |||||
模型 | 7.6300 | 14 | 0.5452 | 170.25 | <0.0001 | 显著 |
A | 0.9185 | 1 | 0.9185 | 286.83 | <0.0001 | |
B | 0.0320 | 1 | 0.0320 | 10 | 0.0069 | |
C | 0.0675 | 1 | 0.0675 | 21.080 | 0.0004 | |
D | 0.0133 | 1 | 0.0133 | 4.1600 | 0.0606 | |
AB | 0.2116 | 1 | 0.2116 | 66.080 | <0.0001 | |
AC | 0.0100 | 1 | 0.0100 | 3.1200 | 0.099 | |
AD | 0.4900 | 1 | 0.4900 | 153.01 | <0.0001 | |
BC | 0.7225 | 1 | 0.7225 | 225.61 | <0.0001 | |
BD | 0.2500 | 1 | 0.2500 | 78.070 | <0.0001 | |
CD | 0.3600 | 1 | 0.3600 | 112.42 | <0.0001 | |
A² | 3.9500 | 1 | 3.9500 | 1234.96 | <0.0001 | |
B² | 0.4670 | 1 | 0.4670 | 145.84 | <0.0001 | |
C² | 1.0800 | 1 | 1.0800 | 337.73 | <0.0001 | |
D² | 0.6677 | 1 | 0.6677 | 208.49 | <0.0001 | |
残差 | 0.0448 | 14 | 0.0032 | |||
失拟值 | 0.0328 | 10 | 0.0033 | 1.0900 | 0.5074 | 不显著 |
纯误差 | 0.0200 | 4 | 0.0030 | |||
总变异 | 7.6800 | 28 |
表5 装饰原纸不透明度回归模型方差分析
变异来源 | 平方和 | 自由度 | 均方差 | F | P | 显著性 |
---|---|---|---|---|---|---|
R2=0.9942 | Adjusted R2=0.9883 | |||||
模型 | 7.6300 | 14 | 0.5452 | 170.25 | <0.0001 | 显著 |
A | 0.9185 | 1 | 0.9185 | 286.83 | <0.0001 | |
B | 0.0320 | 1 | 0.0320 | 10 | 0.0069 | |
C | 0.0675 | 1 | 0.0675 | 21.080 | 0.0004 | |
D | 0.0133 | 1 | 0.0133 | 4.1600 | 0.0606 | |
AB | 0.2116 | 1 | 0.2116 | 66.080 | <0.0001 | |
AC | 0.0100 | 1 | 0.0100 | 3.1200 | 0.099 | |
AD | 0.4900 | 1 | 0.4900 | 153.01 | <0.0001 | |
BC | 0.7225 | 1 | 0.7225 | 225.61 | <0.0001 | |
BD | 0.2500 | 1 | 0.2500 | 78.070 | <0.0001 | |
CD | 0.3600 | 1 | 0.3600 | 112.42 | <0.0001 | |
A² | 3.9500 | 1 | 3.9500 | 1234.96 | <0.0001 | |
B² | 0.4670 | 1 | 0.4670 | 145.84 | <0.0001 | |
C² | 1.0800 | 1 | 1.0800 | 337.73 | <0.0001 | |
D² | 0.6677 | 1 | 0.6677 | 208.49 | <0.0001 | |
残差 | 0.0448 | 14 | 0.0032 | |||
失拟值 | 0.0328 | 10 | 0.0033 | 1.0900 | 0.5074 | 不显著 |
纯误差 | 0.0200 | 4 | 0.0030 | |||
总变异 | 7.6800 | 28 |
变异来源 | 平方和 | 自由度 | 均方差 | F | P | 显著性 |
---|---|---|---|---|---|---|
R2=0.9942 | Adjusted R2=0.9858 | |||||
模型 | 16.100 | 14 | 1.1500 | 139.36 | < 0.0001 | 显著 |
A | 0.1633 | 1 | 0.1633 | 19.800 | 0.0005 | |
B | 0.0133 | 1 | 0.0133 | 1.6200 | 0.2243 | |
C | 0.0408 | 1 | 0.0408 | 4.9500 | 0.0431 | |
D | 0.4408 | 1 | 0.4408 | 53.430 | < 0.0001 | |
AB | 0.0400 | 1 | 0.0400 | 4.8500 | 0.0449 | |
AC | 0.0400 | 1 | 0.0400 | 4.8500 | 0.0449 | |
AD | 0.2500 | 1 | 0.2500 | 30.300 | < 0.0001 | |
BC | 0.7225 | 1 | 0.7225 | 87.580 | < 0.0001 | |
BD | 0.1225 | 1 | 0.1225 | 14.850 | 0.0018 | |
CD | 0.4900 | 1 | 0.4900 | 59.390 | < 0.0001 | |
A² | 8.9300 | 1 | 8.9300 | 1082.43 | < 0.0001 | |
B² | 2.1300 | 1 | 2.1300 | 258.450 | < 0.0001 | |
C² | 5.3800 | 1 | 5.3800 | 652.280 | < 0.0001 | |
D² | 4.0100 | 1 | 4.0100 | 485.530 | < 0.0001 | |
残差 | 0.1155 | 14 | 0.0083 | |||
失拟值 | 0.1075 | 10 | 0.0108 | 5.3800 | 0.0597 | 不显著 |
纯误差 | 0.0080 | 4 | 0.0020 | |||
总变异 | 16.210 | 28 |
表6 装饰原纸白度回归模型方差分析
变异来源 | 平方和 | 自由度 | 均方差 | F | P | 显著性 |
---|---|---|---|---|---|---|
R2=0.9942 | Adjusted R2=0.9858 | |||||
模型 | 16.100 | 14 | 1.1500 | 139.36 | < 0.0001 | 显著 |
A | 0.1633 | 1 | 0.1633 | 19.800 | 0.0005 | |
B | 0.0133 | 1 | 0.0133 | 1.6200 | 0.2243 | |
C | 0.0408 | 1 | 0.0408 | 4.9500 | 0.0431 | |
D | 0.4408 | 1 | 0.4408 | 53.430 | < 0.0001 | |
AB | 0.0400 | 1 | 0.0400 | 4.8500 | 0.0449 | |
AC | 0.0400 | 1 | 0.0400 | 4.8500 | 0.0449 | |
AD | 0.2500 | 1 | 0.2500 | 30.300 | < 0.0001 | |
BC | 0.7225 | 1 | 0.7225 | 87.580 | < 0.0001 | |
BD | 0.1225 | 1 | 0.1225 | 14.850 | 0.0018 | |
CD | 0.4900 | 1 | 0.4900 | 59.390 | < 0.0001 | |
A² | 8.9300 | 1 | 8.9300 | 1082.43 | < 0.0001 | |
B² | 2.1300 | 1 | 2.1300 | 258.450 | < 0.0001 | |
C² | 5.3800 | 1 | 5.3800 | 652.280 | < 0.0001 | |
D² | 4.0100 | 1 | 4.0100 | 485.530 | < 0.0001 | |
残差 | 0.1155 | 14 | 0.0083 | |||
失拟值 | 0.1075 | 10 | 0.0108 | 5.3800 | 0.0597 | 不显著 |
纯误差 | 0.0080 | 4 | 0.0020 | |||
总变异 | 16.210 | 28 |
指标 | TiO2 | 复合填料 | 滑石粉 |
---|---|---|---|
灰分/% | 19.6 | 20.9 | 20.2 |
不透明度/% | 98.3 | 97.0 | 94.3 |
白度(ISO)/% | 87.2 | 84.5 | 80.6 |
匀度 | 92 | 90 | 87 |
抗张指数/N·m·g-1 | 33.2 | 36.2 | 32.8 |
耐破指数/kPa·m2·g-1 | 2.42 | 2.96 | 2.36 |
透气度/μm·(Pa·s)-1 | 5.73 | 6.95 | 4.59 |
毛细吸液高度/mm·(10min)-1 | 24 | 27 | 22 |
表7 加填TiO2、复合填料和滑石粉对纸张性能的影响
指标 | TiO2 | 复合填料 | 滑石粉 |
---|---|---|---|
灰分/% | 19.6 | 20.9 | 20.2 |
不透明度/% | 98.3 | 97.0 | 94.3 |
白度(ISO)/% | 87.2 | 84.5 | 80.6 |
匀度 | 92 | 90 | 87 |
抗张指数/N·m·g-1 | 33.2 | 36.2 | 32.8 |
耐破指数/kPa·m2·g-1 | 2.42 | 2.96 | 2.36 |
透气度/μm·(Pa·s)-1 | 5.73 | 6.95 | 4.59 |
毛细吸液高度/mm·(10min)-1 | 24 | 27 | 22 |
1 | 彭庆华. 合成超细硅酸铝在装饰原纸生产中的应用[J]. 中华纸业, 2022, 43(16): 13-18. |
PENG Qinghua. Application of synthetic ultrafine aluminum silicate in decorative base paper production[J]. China Pulp & Paper Industry, 2022, 43(16): 13-18. | |
2 | 苏艳群, 张瑞娟, 刘金刚, 等. 煅烧土/纳米纤维素协同二氧化钛加填对装饰原纸性能的影响[J]. 中国造纸, 2022, 41(12): 36-42. |
SU Yanqun, ZHANG Ruijuan, LIU Jingang, et al. Effects of calcined clay/nanocelluose synergistic titanium dioxide filling on the properties of decorative base paper[J]. China Pulp & Paper, 2022, 41(12): 36-42. | |
3 | 陈雪峰, 许跃, 刘文, 等. 复合钛白粉性能及在装饰原纸中应用的研究[J]. 中国造纸, 2015, 34(12): 1-6. |
CHEN Xuefeng, XU Yue, LIU Wen, et al. Study on the properties of composite titanium dioxide and its application in decorative base paper[J]. China Pulp & Paper, 2015, 34(12): 1-6. | |
4 | 李晓琪. 水溶性高分子乳液改性二氧化钛/无机复合物及其在造纸工业中的应用[D]. 长春: 吉林大学, 2020. |
LI Xiaoqi. Water-soluble polymer emulsion modified TiO2/inorganic composite and its application in paper industry[D]. Changchun: Jilin University, 2020. | |
5 | 桂正涛, 王文利, 李建康, 等. 二氧化钛的制备、改性及其应用研究[J]. 现代盐化工, 2021, 48(5): 12-14, 19. |
GUI Zhengtao, WANG Wenli, LI Jiankang, et al. Study on preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021, 48(5): 12-14, 19. | |
6 | HOU Xifeng, ZHANG Yihe, DING Hao, et al. Environmentally friendly wollastonite@TiO2 composite particles prepared by a mechano-chemical method[J]. Particuology, 2018, 40: 105-112. |
7 | LIN Hai, DONG Yingbo, JIANG Leyong. Preparation of calcium carbonate particles coated with titanium dioxide[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 592-597. |
8 | LAYSANDRA Livy, SARI Meri Winda Masnona Kartika, SOETAREDJO Felycia Edi, et al. Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration[J]. Heliyon, 2018, 3(12): e00488. |
9 | TAHER T, WULANDARI A, MOHADI R, et al. TiO2/kaolin composite as low-cost adsorbent for procion red removal from aqueous solution: Kinetics, equilibrium, and thermodynamic studies[J]. Bulletin of the Chemical Society of Ethiopia, 2019, 33(3): 437. |
10 | ZHANG Guangxin, SUN Zhiming, DUAN Yongwei, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017, 412: 105-112. |
11 | 张妍, 王慧乐, 赵会芳, 等. 二氧化钛复合填料的制备及在装饰原纸中的应用研究[J]. 中国造纸, 2022, 41(12): 43-50. |
ZHANG Yan, WANG Huile, ZHAO Huifang, et al. Preparation of titanium dioxide/talc composite filler and its application in decorative base paper[J]. China Pulp & Paper, 2022, 41(12): 43-50. | |
12 | 黄骏. 复合钛白粉在涂料中的应用研究[J]. 上海染料, 2019, 47(3): 1-5. |
HUANG Jun. Research on application of complex titanium dioxide on coatings[J]. Shanghai Dyestuffs, 2019, 47(3): 1-5. | |
13 | 钱红梅, 李燕, 郝成伟. 高岭土负载氧化锌/氧化钛制备光催化功能材料的研究[J]. 中国非金属矿工业导刊, 2010(2): 18-21. |
QIAN Hongmei, LI Yan, HAO Chengwei. Research on preparation of kaolin ZnO/TiO2 load photocatalytic functional materials[J]. China Non-Metallic Minerals Industry, 2010(2): 18-21. | |
14 | ZHANG Yalei, GAN Huihui, ZHANG Gaoke. A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants[J]. Chemical Engineering Journal, 2011, 172(2/3): 936-943. |
15 | GAO Qiang, WU Xiaomei, XIA Zhiwei, et al. Coating mechanism and near-infrared reflectance property of hollow fly ash bead/TiO2 composite pigment[J]. Powder Technology, 2017, 305: 433-439. |
16 | 侯喜锋, 丁浩, 杜高翔, 等. 机械力化学法制备绢云母/TiO2复合颗粒材料的机理研究及表征[J]. 北京工业大学学报, 2013, 39(9): 1413-1419. |
HOU Xifeng, DING Hao, DU Gaoxiang, et al. Preparation of sericite/TiO2 composite particle material via mechno-chemistry and its characterization[J]. Journal of Beijing University of Technology, 2013, 39(9): 1413-1419. | |
17 | 肖艳红. Pickering乳液聚合法制备聚丙烯酸酯/纳米二氧化硅复合乳液及其涂料应用[D]. 广州: 华南理工大学, 2018. |
XIAO Yanhong. Preparation of polyacrylate/nano silica composite emulsion by Pickering emulsion polymerization and its application in coatings[D]. Guangzhou: South China University of Technology, 2018. | |
18 | 薛伟. 微乳液法制备超微细包覆型催化剂及其催化苯酚氧化羰基化反应研究[D]. 北京: 北京化工大学, 2005. |
XUE Wei. Preparation of ultrafine coated catalyst by microemulsion method and its catalytic effect on oxidative carbonylation of phenol[D]. Beijing: Beijing University of Chemical Technology, 2005. | |
19 | 马超平. 十二烷基三甲基溴化铵/醇/油/水体系微乳化作用研究[D]. 广州: 华南理工大学, 2012. |
MA Chaoping. Microemulsification in dodecyltrimethylammonium bromide/alcohols/oils/water systems[D]. Guangzhou: South China University of Technology, 2012. | |
20 | LUO Chenglin, YU Bang, QI Qi, et al. Construction of magnetic-fluorescent bifunctional nanoparticles via miniemulsion polymerization for cell imaging[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126062. |
21 | BERA Achinta, MANDAL Ajay, KUMAR T. Physicochemical characterization of anionic and cationic microemulsions: Water solubilization, particle size distribution, surface tension, and structural parameters[J]. Journal of Chemical & Engineering Data, 2014, 59(8): 2490-2498. |
22 | KUANG Jian, GAO Jian, XIE Shaoxia, et al. Phase behaviors and curcumin encapsulation performance of Gemini surfactant microemulsion[J]. Journal of Molecular Liquids, 2020, 315: 113786. |
23 | PAKKANG Nutthira, URAKI Yasumitsu, KODA Keiichi, et al. Preparation of water-in-oil microemulsion from the mixtures of castor oil and sunflower oil as makeup remover[J]. Journal of Surfactants and Detergents, 2018, 21(6): 809-816. |
24 | 周琴, 唐茂, 刘佳伟, 等. 铜掺杂锐钛矿型二氧化钛光催化性能研究[J]. 山东化工, 2021, 50(17): 22-23, 25. |
ZHOU Qin, TANG Mao, LIU Jiawei, et al. The research on the photocatalytic performance of copper-doped anatase type titanium dioxide[J]. Shandong Chemical Industry, 2021, 50(17): 22-23, 25. | |
25 | 周伟, 郭宪英, 刘妍妍. 锐钛型纳米TiO2表面疏水化改性研究[J]. 精细与专用化学品, 2010, 18(11): 25-30. |
ZHOU Wei, GUO Xianying, LIU Yanyan. Study on surface drain modification of the nanosized TiO2 [J]. Fine and Specialty Chemicals, 2010, 18(11): 25-30. |
[1] | 胡飞燕, 彭嘉欢, 李珩, 徐朝华, 孙宁. 一维多孔二氧化钛@碳纳米纤维复合材料的制备及储钠应用[J]. 化工进展, 2024, 43(4): 1934-1943. |
[2] | 黄志国, 孙志高. 蓄热用纳米相变微胶囊制备与性能[J]. 化工进展, 2023, 42(11): 5842-5851. |
[3] | 孔倩, 孙巾超, 葛佳琪, 张鹏, 马艳龙, 刘百军. 沉淀剂对NiW/TiO2-ASA催化剂加氢裂化性能的影响[J]. 化工进展, 2023, 42(1): 265-271. |
[4] | 戴绍铃, 于桢, 李逸航, 成少安. 多层纳米结构蓝色TiO2的电化学氧化性能和稳定性[J]. 化工进展, 2022, 41(2): 862-873. |
[5] | 崔维怡, 丁国敏, 谭乃迪. 二氧化钛基催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2022, 41(12): 6310-6318. |
[6] | 孙通, 许东东, 宋民航, 靳星, 黄云. 火焰合成法制备TiO2的燃烧发生器研究进展[J]. 化工进展, 2022, 41(1): 17-29. |
[7] | 胡楠, 陈林, 李会珍, 张思瑶, 张志军. 强化泡沫排液下浮选富集和回收工程纳米颗粒[J]. 化工进展, 2022, 41(1): 485-492. |
[8] | 张轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222. |
[9] | 蒋彩云, 吴婷, 周海飞, 王玉萍. 一种可温度与pH调控的分子印迹光催化材料的制备及其性能[J]. 化工进展, 2021, 40(1): 305-312. |
[10] | 董璐, 黄亚继, 丁守一, 程好强, 王圣, 段钰锋. Ti-Al复合载体载锰催化剂同时脱硝脱汞实验[J]. 化工进展, 2021, 40(1): 234-241. |
[11] | 李晓静, 张永春, 陈绍云. 改性氧化钛对羟乙基乙二胺水溶液解吸CO2的强化[J]. 化工进展, 2020, 39(5): 2026-2032. |
[12] | 李连震,李琳琳,管勇,刘海涛. 不同无机填料对聚氨酯阻尼材料性能的影响[J]. 化工进展, 2019, 38(08): 3795-3800. |
[13] | 张巧玲, 秦钊, 刘有智, 师艳婷, 张竞文, 曾广平. 氧化石墨烯-TiO2复合材料对三种染料的吸附动力学及光催化性能[J]. 化工进展, 2019, 38(06): 2870-2879. |
[14] | 曹浩, 陆金仁, 李伟琪, 包木太, 李一鸣, 马威伊. TNAs的制备条件及可见光下GQDs/TNAs复合材料的性能初探[J]. 化工进展, 2019, 38(02): 1000-1009. |
[15] | 张崇淼, 温银梅, 高敏, 高倩. TiO2、ZnO和TiO2/ZnO三种氧化物粉体材料的抗菌性能对比[J]. 化工进展, 2018, 37(11): 4343-4348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |