化工进展 ›› 2019, Vol. 38 ›› Issue (02): 1000-1009.DOI: 10.16085/j.issn.1000-6613.2018-0763
收稿日期:
2018-04-13
修回日期:
2018-10-30
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
陆金仁
作者简介:
<named-content content-type="corresp-name">曹浩</named-content>(1994—),男,硕士研究生,研究方向为分离工程。E-mail:<email>975357237@qq.com</email>。|陆金仁,讲师,硕士生导师,研究方向为水和废水处理技术。E-mail:<email>lujr@ouc.edu.cn</email>。
Hao CAO(),Jinren LU(
),Weiqi LI,Mutai BAO,Yiming LI,Weiyi MA
Received:
2018-04-13
Revised:
2018-10-30
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jinren LU
摘要:
采用阳极氧化法制备了二氧化钛纳米管阵列(TNAs),探索了制备条件对TNAs表面形貌结构的影响;并采用电泳法制备了石墨烯量子点/二氧化钛纳米管阵列(GQDs/TNAs)复合材料,以罗丹明B为目标降解物,初步考察了复合材料的光催化性能;进而通过X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、紫外-可见漫反射(UV-vis DRS)、电化学阻抗(EIS)和光电压响应等手段对其结构和光电学特征进行了分析。结果表明,氧化次数和电解液类型对TNAs排列的有序性具有显著影响,二次氧化时间、二次阳极电压和NH4F质量分数对TNAs的管长、管径具有明显影响;适宜条件下GQDs的掺杂有助于提升TNAs的光催化性能,经120min的可见光照射后,制备的GQDs/TNAs复合材料对罗丹明B的降解率达到70.3%,较TNAs提高了19.7%,且具有良好的稳定性;光电学测试同样表明该GQDs/TNAs复合材料的光吸收效率和光电子转移能力较TNAs有明显提高。
中图分类号:
曹浩, 陆金仁, 李伟琪, 包木太, 李一鸣, 马威伊. TNAs的制备条件及可见光下GQDs/TNAs复合材料的性能初探[J]. 化工进展, 2019, 38(02): 1000-1009.
Hao CAO, Jinren LU, Weiqi LI, Mutai BAO, Yiming LI, Weiyi MA. Preliminary investigation of the preparation conditions of TNAs and performance of GQDs/TNAs composites under visible light[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1000-1009.
1 | CHONG M N , JIN B , CHOW C W , et al . Recent developments in photocatalytic water treatment technology:a review[J]. Water Research, 2010, 44(10): 2997. |
2 | 李晓平, 徐宝琨, 刘国范, 等 . 纳米TiO2光催化降解水中有机污染物的研究与发展[J]. 功能材料, 1999(3): 242-245. |
LI Xiaoping , XU Baokun , LIU Guofan , et al . The research and development of photocatalytic degradation of organic contaminant over nanosized TiO2 in water[J]. Functional Materials, 1999(3): 242-245. | |
3 | GONG D , GRIMES C A , VARGHESE O K , et al . Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334. |
4 | ZHANG Y , ZHOU Z , CHEN T , et al . Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol[J]. Journal of Environmental Sciences, 2014, 26(10): 2114-2122. |
5 | ZHANG Q , BAO N , ZHU X , et al . Preparation and photocatalytic properties of graphene/TiO2 nanotube array photoelectrodes[J]. Journal of Alloys & Compounds, 2015, 618(1): 761-767. |
6 | WANG J , WANG P , CAO Y , et al . A high efficient photocatalyst Ag3VO4 /TiO2/graphene nanocomposite with wide spectral response[J]. Applied Catalysis B: Environmental, 2013, 136/137(12): 94-102. |
7 | 姬子晔 . 石墨烯量子点的制备及其荧光性质的研究[D]. 天津:天津工业大学, 2017. |
JI Ziye . Preparation of graphene quantum dots and study on their fluorescence properties[D]. Tianjin:Tianjin Polytechnic University, 2017. | |
/rod-shaped | |
8 | 边仕月 . 若干新型石墨烯量子点的制备及其在金属离子检测和光催化中的应用研究[D]. 杭州: 浙江理工大学, 2017. |
BIAN Shiyue . Preparation of some novel graphene quantum dots and their application in metal ion detection and photocatalysis[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. | |
9 | YU Y , REN J , Meng M . Photocatalytic hydrogen evolution on graphene quantum dots anchored TiO2 nanotubes-array[J]. International Journal of Hydrogen Energy, 2013, 38(28): 12266-12272. |
10 | 沈凯 . 氮、硫掺杂石墨烯量子点/二氧化钛复合材料的光催化性能研究[D]. 长春: 吉林大学, 2017. |
SHEN Kai . Photocatalytic performance of N,S-GQDs/TiO2 composites[D]. Changchun: Jilin University, 2017. | |
11 | 李翠 . 胺基化石墨烯量子点/二氧化钛纳米管复合材料的制备及其电容性能研究[D]. 上海:上海大学, 2015. |
LI Cui . Preparation and capacitive performance of composite materials of amine-functionalized graphene quantum dots/TiO2 nanotube arrays[D]. Shanghai:Shanghai University, 2015. | |
12 | 衡维新 . TiO2纳米管的制备、修饰及其在化学需氧量检测领域的应用[D]. 上海:东华大学, 2017. |
Weixin HEN . Preparation and modification of TiO2 nanotubes and application in the chemical oxygen demand determination[D]. Shanghai:Donghua University, 2017. | |
13 | 肖同欣 . 改进的二次阳极氧化法制备表面平整的TiO2纳米管阵列[J]. 化工新型材料, 2017(12): 93-95. |
XIAO Tongxin . TiO2 nanotube arrays with regular structure prepared by improved two-step anodic oxidation[J]. New Chemical Materials, 2017(12): 93-95. | |
14 | 孙岚, 李静, 庄惠芳, 等 . TiO2纳米管阵列的制备、改性及其应用研究进展[J]. 无机化学学报, 2007, 23(11): 1841-1850. |
SUN Lan , LI Jing , ZHUANG Huifang , et al . Progress on pabrication, modification and applications of titania nanotube arrays[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 1841-1850. | |
15 | 杨旭一, 黄其煜 . 有机电解液在阳极氧化法制备TiO2纳米管中的应用[J]. 化学进展, 2009, 21(1): 116-120. |
YANG Xuyi , HUANG Qiyu . Application of organic electrolytes in TiO2 nanotubes fabrication[J]. Progress in Chemistry, 2009, 21(1): 116-120. | |
16 | LI Y , DUAN X , LI X , et al . Photodegradation of nonylphenol by simulated sunlight[J]. Marine Pollution Bulletin, 2013, 66(1/2): 47. |
17 | KONGSONG P , LEK S, NIYOMWAS S , et al . Photocatalytic degradation of glyphosate in water by N-doped SnO2/TiO2 thin-film-coated glass fibers[J]. Photochemistry & Photobiology, 2014, 90(6): 1243. |
18 | ZHAO S W . Study on the photocatalytic degradation of failure glyphosate pesticide by ZnO nanoparticle[J]. Journal of Agro-Environment Science, 2012, 31(1): 54-59. |
19 | ZHENG D , XIN Y , MA D, et al . Preparation of graphene/TiO2 nanotube array photoelectrodes and their photocatalytic activity for the degradation of alachlor[J]. Catalysis Science & Technology, 2016, 6(6): 1892-1902. |
20 | LIU G L , ZHU D , ZHOU Y Y , et al . Photo-induced phosphate released from organic phosphorus decomposition by nitrate[J]. China Environmental Science, 2016, 36(12): 3657-3664. |
21 | DONG P , WANG Y , GUO L , et al . A facile one-step solvothermal synthesis of graphene TiO2 nanocomposite and its improved photocatalytic activity[J]. Nanoscale, 2012, 4(15): 4641. |
22 | PAN X , ZHAO Y , LIU S , et al . Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3944. |
23 | LEE J S, YOU K H , PARK C B . Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene[J]. Advanced Materials, 2012, 24(8): 1084-1088. |
24 | SALAM Z , ELAYAPPAN V , ANGAIAH S , et al . Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells[J]. Solar Energy Materials & Solar Cells, 2015, 143:250-259. |
25 | HOU J , YANG C , WANG Z , et al . Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {0 0 1} facets on graphene sheets for enhanced visible-light photocatalytic performance[J]. Applied Catalysis B: Environmental, 2013, 129(3): 333-341. |
26 | LI H , XING J , XIA Z , et al . Preparation of coaxial heterogeneous graphene quantum dot-sensitized TiO2 nanotube arrays via linker molecule binding and electrophoretic deposition[J]. Carbon, 2015, 81(1): 474-487. |
27 | CHEN Y , HUANG W , HE D , et al . Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14405-14414. |
28 | YANG M Q , ZHANG N , XU Y J . Synthesis of fullerene , carbon nanotube , and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1156. |
29 | LU T , ZHANG Y , LI H , et al . Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors[J]. Electrochimica Acta, 2010, 55(13): 4170-4173. |
30 | ZHANG H , LV X , LI Y , et al . P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4(1): 380. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 163
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |