化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1823-1831.DOI: 10.16085/j.issn.1000-6613.2023-0579
• 工业催化 • 上一篇
孙巾茹1,2(), 宋傲磊2, 赵明新2, 赵田田2, 王虹2(), 柯明1()
收稿日期:
2023-04-11
修回日期:
2023-08-03
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
王虹,柯明
作者简介:
孙巾茹(1994—),女,博士研究生,研究方向为新材料与催化剂工程。E-mail:sunjinru32@163.com。
基金资助:
SUN Jinru1,2(), SONG Aolei2, ZHAO Mingxin2, ZHAO Tiantian2, WANG Hong2(), KE Ming1()
Received:
2023-04-11
Revised:
2023-08-03
Online:
2024-04-15
Published:
2024-05-13
Contact:
WANG Hong, KE Ming
摘要:
以乙酸钴为钴源采用水热法制备了Co3O4催化剂,通过X射线衍射仪、傅里叶变换红外光谱仪、透射电子显微镜、扫描电子显微镜、N2物理吸附脱附测试、H2程序升温还原、氧的程序升温脱附和X射线光电子能谱等表征手段对Co3O4催化剂的物理化学性质进行表征,在固定床微型反应器中评价催化剂催化分解N2O活性,考察了不同沉淀剂(氢氧化钠、碳酸钠、碳酸氢钠、尿素、碳酸铵、氨水)对催化剂催化分解N2O的性能影响。结果表明,水热法制备的Co3O4催化剂均为尖晶石结构,不同沉淀剂影响催化剂形貌、氧化还原性能和催化分解N2O活性;含有钠离子沉淀剂制备而得的催化剂活性高于其他催化剂,其促进了Co3+到Co2+的还原过程,影响了钴离子化学环境,提高了给电子能力,弱化了催化剂中的Co—O键,加快了反应过程中氧空位的再生,进而提高了自身的催化活性;其中含少量Na离子的Co3O4-NaOH催化剂具有较强的氧化还原性,Oads/Olatt较大,表面吸附氧数量多,N2O分解温度较低,在反应气体组成为0.88% O2、0.65% N2O,N2为平衡气的(流量为80mL/min)条件下,T10和T95分别为330℃和470℃。
中图分类号:
孙巾茹, 宋傲磊, 赵明新, 赵田田, 王虹, 柯明. 沉淀剂对Co3O4催化分解N2O的性能影响[J]. 化工进展, 2024, 43(4): 1823-1831.
SUN Jinru, SONG Aolei, ZHAO Mingxin, ZHAO Tiantian, WANG Hong, KE Ming. Effect of precipitating agent on the performance of Co3O4-catalyzed decomposition of N2O[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1823-1831.
催化剂 | 2θ/(°) | a0/Å | V/nm3 | FWHM /(°) | DXRD/nm | 比表面积 /m2∙g-1 |
---|---|---|---|---|---|---|
Co3O4-NaOH | 37.095 | 8.027 | 517.1 | 0.186 | 46.52 | 25.2 |
Co3O4-Na2CO3 | 37.154 | 8.014 | 514.8 | 0.179 | 47.96 | 17.4 |
Co3O4-NaHCO3 | 37.057 | 8.035 | 518.7 | 0.148 | 58.79 | 25.9 |
Co3O4-尿素 | 37.002 | 8.046 | 520.9 | 0.149 | 58.90 | 21.4 |
Co3O4-碳酸铵 | 37.040 | 8.038 | 519.3 | 0.148 | 58.94 | 18.6 |
Co3O4-氨水 | 37.036 | 8.039 | 519.5 | 0.147 | 59.38 | 15.7 |
表1 Co3O4-x催化剂XRD和BET分析结果
催化剂 | 2θ/(°) | a0/Å | V/nm3 | FWHM /(°) | DXRD/nm | 比表面积 /m2∙g-1 |
---|---|---|---|---|---|---|
Co3O4-NaOH | 37.095 | 8.027 | 517.1 | 0.186 | 46.52 | 25.2 |
Co3O4-Na2CO3 | 37.154 | 8.014 | 514.8 | 0.179 | 47.96 | 17.4 |
Co3O4-NaHCO3 | 37.057 | 8.035 | 518.7 | 0.148 | 58.79 | 25.9 |
Co3O4-尿素 | 37.002 | 8.046 | 520.9 | 0.149 | 58.90 | 21.4 |
Co3O4-碳酸铵 | 37.040 | 8.038 | 519.3 | 0.148 | 58.94 | 18.6 |
Co3O4-氨水 | 37.036 | 8.039 | 519.5 | 0.147 | 59.38 | 15.7 |
催化剂 | 原子含量/% | ||
---|---|---|---|
Na | O | Co | |
Co3O4-NaOH | 0.4 | 53.1 | 46.5 |
Co3O4-Na2CO3 | 9.1 | 48.9 | 42.0 |
Co3O4-NaHCO3 | 6.5 | 53.4 | 40.1 |
表2 Co3O4-x催化剂的原子含量
催化剂 | 原子含量/% | ||
---|---|---|---|
Na | O | Co | |
Co3O4-NaOH | 0.4 | 53.1 | 46.5 |
Co3O4-Na2CO3 | 9.1 | 48.9 | 42.0 |
Co3O4-NaHCO3 | 6.5 | 53.4 | 40.1 |
催化剂 | α | β | 总面积 /10-6 | 面积比(β/α) | ||
---|---|---|---|---|---|---|
峰位 /℃ | 面积 /10-6 | 峰位 /℃ | 面积 /10-6 | |||
Co3O4-NaOH | 350 | 1.61 | 397 | 5.10 | 6.71 | 3.2 |
Co3O4-Na2CO3 | 337 | 1.83 | 441 | 5.72 | 7.55 | 3.1 |
Co3O4-NaHCO3 | 353 | 1.52 | 441 | 4.69 | 6.21 | 3.1 |
Co3O4-尿素 | 352 | 1.16 | 402 | 3.48 | 4.64 | 3.0 |
Co3O4-碳酸铵 | 358 | 1.08 | 405 | 3.26 | 4.34 | 3.0 |
Co3O4-氨水 | 359 | 0.68 | 408 | 2.10 | 2.78 | 3.1 |
表3 Co3O4-x催化剂H2-TPR数据
催化剂 | α | β | 总面积 /10-6 | 面积比(β/α) | ||
---|---|---|---|---|---|---|
峰位 /℃ | 面积 /10-6 | 峰位 /℃ | 面积 /10-6 | |||
Co3O4-NaOH | 350 | 1.61 | 397 | 5.10 | 6.71 | 3.2 |
Co3O4-Na2CO3 | 337 | 1.83 | 441 | 5.72 | 7.55 | 3.1 |
Co3O4-NaHCO3 | 353 | 1.52 | 441 | 4.69 | 6.21 | 3.1 |
Co3O4-尿素 | 352 | 1.16 | 402 | 3.48 | 4.64 | 3.0 |
Co3O4-碳酸铵 | 358 | 1.08 | 405 | 3.26 | 4.34 | 3.0 |
Co3O4-氨水 | 359 | 0.68 | 408 | 2.10 | 2.78 | 3.1 |
催化剂 | Co 2p3/2结合能/eV | Co2+/Co3+ | O 1s结合能/eV | Oads/Olatt | ||
---|---|---|---|---|---|---|
Co2+ | Co3+ | Oads | Olatt | |||
Co3O4-NaOH | 780.59 | 778.89 | 0.53 | 531.01 | 529.71 | 0.68 |
Co3O4-Na2CO3 | 780.61 | 778.91 | 0.53 | 531.02 | 529.52 | 0.79 |
Co3O4-NaHCO3 | 780.63 | 778.93 | 0.52 | 531.02 | 529.52 | 0.62 |
Co3O4-尿素 | 780.71 | 779.01 | 0.49 | 531.12 | 529.82 | 0.59 |
Co3O4-碳酸铵 | 780.71 | 779.01 | 0.47 | 531.12 | 529.82 | 0.55 |
Co3O4-氨水 | 780.72 | 779.02 | 0.46 | 531.12 | 529.82 | 0.45 |
表4 Co3O4-x催化剂XPS数据
催化剂 | Co 2p3/2结合能/eV | Co2+/Co3+ | O 1s结合能/eV | Oads/Olatt | ||
---|---|---|---|---|---|---|
Co2+ | Co3+ | Oads | Olatt | |||
Co3O4-NaOH | 780.59 | 778.89 | 0.53 | 531.01 | 529.71 | 0.68 |
Co3O4-Na2CO3 | 780.61 | 778.91 | 0.53 | 531.02 | 529.52 | 0.79 |
Co3O4-NaHCO3 | 780.63 | 778.93 | 0.52 | 531.02 | 529.52 | 0.62 |
Co3O4-尿素 | 780.71 | 779.01 | 0.49 | 531.12 | 529.82 | 0.59 |
Co3O4-碳酸铵 | 780.71 | 779.01 | 0.47 | 531.12 | 529.82 | 0.55 |
Co3O4-氨水 | 780.72 | 779.02 | 0.46 | 531.12 | 529.82 | 0.45 |
催化剂 | T10/℃ | T95/℃ |
---|---|---|
Co3O4-NaOH | 330 | 470 |
Co3O4-Na2CO3 | 398 | 462 |
Co3O4-NaHCO3 | 418 | 491 |
Co3O4-尿素 | 378 | 561 |
Co3O4-碳酸铵 | 400 | 580 |
Co3O4-氨水 | 411 | 630 |
表5 Co3O4-x催化剂活性评价结果
催化剂 | T10/℃ | T95/℃ |
---|---|---|
Co3O4-NaOH | 330 | 470 |
Co3O4-Na2CO3 | 398 | 462 |
Co3O4-NaHCO3 | 418 | 491 |
Co3O4-尿素 | 378 | 561 |
Co3O4-碳酸铵 | 400 | 580 |
Co3O4-氨水 | 411 | 630 |
1 | RICHARDS N, CARTER J H, PARKER L A, et al. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods[J]. ACS Catalysis, 2020, 10(10): 5430-5442. |
2 | LIAN X, GUO W L, HE B, et al. Insights of the mechanisms for CO oxidation by N2O over M@Cu12(M=Cu, Pt, Ru, Pd, Rh) core-shell clusters[J]. Molecular Catalysis, 2020, 494: 111126. |
3 | SHEN Q, WU M F, WANG H, et al. The influence of desilication on high-silica MFI and its catalytic performance for N2O decomposition[J]. Applied Surface Science, 2018, 441: 474-481. |
4 | XIONG S C, CHEN J J, HUANG N, et al. Balance between reducibility and N2O adsorption capacity for the N2O decomposition: Cu x Co y catalysts as an example[J]. Environmental Science & Technology, 2019, 53(17): 10379-10386. |
5 | ZHAN Y Y, LIU Y, PENG X B, et al. Molecular-level understanding of reaction path optimization as a function of shape concerning the metal-support interaction effect of Co/CeO2 on water-gas shift catalysis[J]. Catalysis Science & Technology, 2019, 9(18): 4928-4937. |
6 | ZENKOVETS G A, SHUTILOV R A, SOBOLEV V I, et al. Catalysts Cu/ZSM-5 for N2O decomposition obtained with copper complexes of various structures[J]. Catalysis Communications, 2020, 144: 106072. |
7 | HE G Z, ZHANG B, HE H, et al. Atomic-scale insights into zeolite-based catalysis in N2O decomposition[J]. Science of the Total Environment, 2019, 673: 266-271. |
8 | ZHANG Y Y, GUO Y Q, LI N, et al. Catalytic N2O decomposition over CeMeO y /γ-Al2O3(Me=Mn,Cu,Zn) catalysts prepared by impregnation method[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(5): e2233. |
9 | DAVIDSON E A, KANTER D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10): 105012. |
10 | RICHARDS N, CARTER J H, NOWICKA E, et al. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition[J]. Applied Catalysis B: Environmental, 2020, 264: 118501. |
11 | ZHU H Y, LI Y Z, ZHENG X L, et al. In-situ DRIFTS study of CeO2 supported Rh catalysts for N2O decomposition[J]. Applied Catalysis A: General, 2019, 571: 89-95. |
12 | KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects[J]. ACS Catalysis, 2015, 5(11): 6397-6421. |
13 | FENG X B, TIAN M J, HE C, et al. Yolk-shell-like mesoporous CoCrO x with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493. |
14 | KIM K, BAEK S, KIM J J, et al. Catalytic decomposition of N2O on Pd x Cu y alloy catalysts: A density functional theory study[J]. Applied Surface Science, 2020, 510: 145349. |
15 | FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels Cu x Co3- x O4,as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Applied Catalysis B: Environmental, 2015, 176/177: 298-305. |
16 | 黄可龙, 刘人生, 杨幼平, 等. 形貌可控的四氧化三钴溶剂热合成及反应机理[J]. 物理化学学报, 2007, 23(5): 655-658. |
HUANG Kelong, LIU Rensheng, YANG Youping, et al. Shape-controlled synthesis and formation mechanism of Co3O4 by solvothermal method[J]. Acta Physico-Chimica Sinica, 2007, 23(5): 655-658. | |
17 | 张英芳, 董清溪, 马春, 等. Co3O4-Bi2O2CO3催化剂的制备及其光催化性能[J]. 化工进展, 2021, 40(S1): 238-244. |
ZHANG Yingfang, DONG Qingxi, MA Chun, et al. Preparation and photocatalytic properties of Co3O4-Bi2O2CO3 catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 238-244. | |
18 | 范书琼, 孔令斌, 王儒涛, 等. Co3O4的制备及电化学性能[J]. 化工进展, 2013, 32(S1): 168-173. |
FAN Shuqiong, KONG Lingbin, WANG Rutao, et al. Electrochemical performance of prepared Co3O4 materials[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 168-173. | |
19 | QIAN M, ZENG H C. Synthesis and characterization of Mg-Co catalytic oxide materials for low-temperature N2O decomposition[J]. Journal of Materials Chemistry, 1997, 7(3): 493-499. |
20 | WÓJCIK S, GRZYBEK G, STELMACHOWSKI P, et al. Bulk, surface and interface promotion of Co3O4 for the low-temperature N2O decomposition catalysis[J]. Catalysts, 2019, 10(1): 41. |
21 | OHNISHI C, ASANO K, IWAMOTO S,et al .Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catalysis Today, 2007, 120(2): 145-150. |
22 | 黄草明, 教光辉, 肖发新, 等. 沉淀法制备微米四氧化三钴试验研究[J]. 湿法冶金, 2019, 38(3): 243-248. |
HUANG Caoming, JIAO Guanghui, XIAO Faxin, et al. Preparation of micron cobaltosic oxide by precipitation method[J]. Hydrometallurgy of China, 2019, 38(3): 243-248. | |
23 | WANG Y Z, HU X B, ZHENG K, et al. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123(2): 707-721. |
24 | ZHANG Q L, TANG X S, NING P, et al. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. RSC Advances, 2015, 5(63): 51263-51270. |
25 | KIM M-J, LEE S-J, I-S RYU, et al. Catalytic decomposition of N2O over cobalt based spinel oxides: The role of additives[J]. Molecular Catalysis, 2017, 442: 202-207. |
26 | 魏旭晖, 刘晓丽, 武瑞芳, 等. 动物骨源羟磷灰石负载Co3O4用于N2O催化分解[J]. 工业催化, 2019, 27(8): 109-114. |
WEI Xuhui, LIU Xiaoli, WU Ruifang, et al. N2O catalytic decomposition over Co3O4 supported on bone-derived hydroxyapatite of different animals[J]. Industrial Catalysis, 2019, 27(8): 109-114. | |
27 | INAYAT A, AYOUB M, ABDULLAH A Z, et al. Decomposition of N2O at low temperature over Co3O4 prepared by different methods[J]. Environmental Progress & Sustainable Energy, 2019, 38(4): 13129. |
28 | LIU S, TANG N F, SHANG Q H, et al. Superior performance of iridium supported on rutile titania for the catalytic decomposition of N2O propellants[J]. Chinese Journal of Catalysis, 2018, 39(7): 1189-1193. |
29 | ARMANDI M, ANDANA T, BENSAID S, et al. Effect of the preparation technique of Cu-ZSM-5 catalysts on the isothermal oscillatory behavior of nitrous oxide decomposition[J]. Catalysis Today, 2020, 345: 59-70. |
30 | 李帅, 叶丽萍, 罗勇. 制备条件对CuO-Co3O4-ZnO-CeO2催化剂CO脱除性能的影响[J]. 应用技术学报, 2018, 18(1): 19-25. |
LI Shuai, YE Liping, LUO Yong. The influences of preparation conditions on CuO-Co3O4-ZnO-CeO2 catalysts of CO removal[J]. Journal of Technology, 2018, 18(1): 19-25. | |
31 | 陶炎鑫, 於俊杰, 刘长春, 等. Co-Mg/Al类水滑石衍生复合氧化物上N2O催化分解[J]. 物理化学学报, 2007, 23(2): 162-168. |
TAO Yanxin, YU Junjie, LIU Changchun, et al. N2O catalytic decomposition over mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds[J]. Acta Physico-Chimica Sinica, 2007, 23(2): 162-168. | |
32 | YANG Q, DU L Y, WANG X, et al. CO oxidation over Au/ZrLa-doped CeO2 catalysts: Synergistic effect of zirconium and lanthanum[J]. Chinese Journal of Catalysis, 2016, 37(8): 1331-1339. |
33 | YU H B, WANG X P, WU X X, et al. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chemical Engineering Journal, 2018, 334: 800-806. |
34 | LYKAKI M, PAPISTA E, CARABINEIRO S A C, et al. Optimization of N2O decomposition activity of CuO-CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion[J]. Catalysis Science & Technology, 2018, 8(9): 2312-2322. |
35 | ZHANG T, QIN X, PENG Y, et al. Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition[J]. Catalysis Communications, 2019, 128: 105706. |
36 | WANG Y Z, HU X B, ZHENG K, et al. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catalysis Communications, 2018, 111: 70-74. |
37 | LYKAKI M, PAPISTA E, KAKLIDIS N, et al. Ceria nanoparticles’ morphological effects on the N2O decomposition performance of Co3O4/CeO2 mixed oxides[J]. Catalysts, 2019, 9(3): 233. |
38 | GRZYBEK G, WÓJCIK S, CIURA K, et al. Influence of preparation method on dispersion of cobalt spinel over alumina extrudates and the catalyst deN2O activity[J]. Applied Catalysis B: Environmental, 2017, 210: 34-44. |
39 | ZHAO T Q, GAO Q, LIAO W P, et al. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1120-1128. |
40 | CHEN J H, SHI W B, LI J H. Catalytic combustion of methane over cerium-doped cobalt chromite catalysts[J]. Catalysis Today, 2011, 175(1): 216-222. |
41 | LIU Q, WANG L C, CHEN M, et al. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane[J]. Journal of Catalysis, 2009, 263(1): 104-113. |
42 | ABU-ZIED B M, OBALOVÁ L, PACULTOVÁ K, et al. An investigation on the N2O decomposition activity of Mn x Co1- x Co2O4 nanorods prepared by the thermal decomposition of their oxalate precursors[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 279-289. |
43 | LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204. |
44 | WU L N, QIN W, HU X Y, et al. Decomposition and reduction of N2O on CaS (100) surface: A theoretical account[J]. Surface Science, 2015, 632: 83-87. |
45 | TANG W X, WENG J F, LU X X, et al. Alkali-metal poisoning effect of total CO and propane oxidation over Co3O4 nanocatalysts[J]. Applied Catalysis B: Environmental, 2019, 256: 117859. |
46 | KALE G M, PANDIT S S, JACOB K T. Thermodynamics of cobalt (Ⅱ, Ⅲ) oxide (Co3O4): Evidence of phase transition[J]. Transactions of the Japan Institute of Metals, 1988, 29(2): 125-132. |
47 | TANG W X, XIAO W, WANG S B, et al. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts[J]. Applied Catalysis B: Environmental, 2018, 226: 585-595. |
48 | WANG Y Z, ZHENG K, HU X B, et al. Y2O3 promoted Co3O4 catalyst for catalytic decomposition of N2O[J]. Molecular Catalysis, 2019, 470: 104-111. |
49 | DEL R L, MARBAN G. Stainless steel wire mesh-supported potassium-doped cobalt oxide catalysts for the catalytic decomposition of nitrous oxide[J]. Applied Catalysis B: Environmental, 2012, 126: 39-46. |
[1] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 杨涵, 张一波, 李琦, 张俊, 陶莹, 杨全红. 面向实用化的钠离子电池碳负极:进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
[4] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[5] | 孔倩, 孙巾超, 葛佳琪, 张鹏, 马艳龙, 刘百军. 沉淀剂对NiW/TiO2-ASA催化剂加氢裂化性能的影响[J]. 化工进展, 2023, 42(1): 265-271. |
[6] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[7] | 朱晟, 彭怡婷, 闵宇霖, 刘海梅, 徐群杰. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
[8] | 赵鹬, 周飞, 张伟伟, 李宁, 李世友, 李贵贤. 磷化钴材料在电化学能源领域的研究进展[J]. 化工进展, 2021, 40(4): 2188-2205. |
[9] | 孙舒, 孙丽霞, 文晓慧, 张郝为, 廖丹葵, 孙建华. 硼掺杂Co3O4海胆状微球的制备及其乙醇气敏强化机制[J]. 化工进展, 2021, 40(3): 1537-1544. |
[10] | 刘海华, 李艳春, 丁传敏, 葛晖, 李学宽, 张玮. ZnZr/HZSM-5双功能催化剂在合成气与苯烷基化反应中的催化性能[J]. 化工进展, 2021, 40(12): 6696-6704. |
[11] | 魏润宏, 徐汝辉, 胡学军, 张克宇, 张业男, 梁风, 姚耀春. SnO2-C复合负极材料的维度设计用于锂、钠离子电池[J]. 化工进展, 2020, 39(7): 2677-2686. |
[12] | 朱子翼,董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪,张英杰. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056. |
[13] | 甘蓉丽, 罗光前, 许洋, 梅瑞冬, 朱海露, 周梦丽. 低温等离子体协同铜铈催化剂脱除甲苯[J]. 化工进展, 2018, 37(09): 3416-3423. |
[14] | 王勇, 刘雯, 郭瑞, 罗英, 解晶莹. 钠离子电池正极材料研究进展[J]. 化工进展, 2018, 37(08): 3056-3066. |
[15] | 张英杰, 朱子翼, 董鹏, 赵少博, 章艳佳, 杨成云, 杨城沣, 韦克毅, 李雪. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |