化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2390-2401.DOI: 10.16085/j.issn.1000-6613.2022-1307
岳鑫(), 李春迎, 孙道安(), 李江伟, 杜咏梅, 马辉, 吕剑()
收稿日期:
2022-07-12
修回日期:
2022-12-01
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
孙道安,吕剑
作者简介:
岳鑫(1999—),男,硕士研究生,研究方向为应用化学。E-mail:yuexin233@pku.edu.cn。
基金资助:
YUE Xin(), LI Chunying, SUN Dao’an(), LI Jiangwei, DU Yongmei, MA Hui, LYU Jian()
Received:
2022-07-12
Revised:
2022-12-01
Online:
2023-05-10
Published:
2023-06-02
Contact:
SUN Dao’an, LYU Jian
摘要:
从重氮化合物环丙烷化用多相催化剂类型角度,将环丙烷化多相催化剂分为金属催化剂、金属负载型催化剂、络合物固载化催化剂、金属有机骨架(MOF)基催化剂等,详细介绍和评述了催化剂在活性组分、载体、固载方法、性能及作用原理等方面的研究进展。指出金属负载型催化剂制备简单,活性和选择性较高,但立体选择性差,在农药、医药领域适用性有限,更适宜应用于燃料合成领域,因此提升催化剂的稳定性和拓展金属活性组分是其发展趋势。络合物固载化催化剂具有较好的活性和立体选择性,结构与性能易于调控,但制备过程复杂,活性组分易流失,需通过优化固载方法如共价键合提高固载强度,以及优化载体孔道结构与表面基团提升载体-配体的协同作用。MOF基催化剂在环丙烷化中展现出独特的催化性能,通过机械研磨、配体掺杂、热处理等方式引入缺陷可综合提高MOF基环丙烷化催化剂性能,但需平衡活性与骨架结构的稳定性。此外,设计利于环丙烷化的手性配体并引入至MOF结构提高其立体选择性是MOF基环丙烷化催化剂的重要发展方向。
中图分类号:
岳鑫, 李春迎, 孙道安, 李江伟, 杜咏梅, 马辉, 吕剑. 重氮化合物环丙烷化用多相催化剂研究进展[J]. 化工进展, 2023, 42(5): 2390-2401.
YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401.
1 | 董慧. 环丙烷化高能量密度燃料合成研究[D]. 北京: 北京化工大学, 2021. |
DONG Hui. Synthesis of cyclopropanized high energy density fuel[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
2 | DILL James D, GREENBERG Arthur, LIEBMAN Joel F. Substituent effects on strain energies[J]. Journal of the American Chemical Society, 1979, 101(23): 6814-6826. |
3 | 潘伦, 邓强, 鄂秀天凤, 等. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541. |
PAN Lun, DENG Qiang, Xiutianfeng E, et al. Synthesis chemistry of high-density fuels for aviation and aerospace propulsion[J]. Progress in Chemistry, 2015, 27(11): 1531-1541. | |
4 | THULASIRAM H V, ERICKSON H K, POULTER C D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis[J]. Science, 2007, 316(5821): 73-76. |
5 | CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chemical Reviews, 2017, 117(17): 11570-11648. |
6 | ANDRES Nikolaus, WOLF Heinz, Hans ZÄHNER, et al. Stoffwechselprodukte von mikroorganismen. 253. mitteilung. hormaomycin, ein neues peptid-lacton mit morphogener aktivität auf streptomyceten[J]. Helvetica Chimica Acta, 1989, 72(3): 426-437. |
7 | TROTTMANN F, FRANKE J, RICHTER I, et al. Cyclopropanol warhead in malleicyprol confers virulence of human- and animal-pathogenic burkholderia species[J]. Angewandte Chemie International Edition, 2019, 58(40): 14129-14133. |
8 | CAPITANI Guido, HOHENESTER Erhard, FENG Liang, et al. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene [J]. Journal of Molecular Biology, 1999, 294(3): 745-756. |
9 | DENMARK Scott E, CHRISTENSON Beritte L, Diane M COE, et al. Catalytic enantioselective cyclopropanation with bis(halomethyl)zinc reagents. Ⅰ. Optimization of reaction protocol[J]. Tetrahedron Letters, 1995, 36(13): 2215-2218. |
10 | DEMSELBEN. Ueber die zersetzung des chloroforms durch alkoholische kalilösung[J]. Justus Liekigs Annalen Der Chemie, 1862, 123(1): 121-122. |
11 | BEDEKAR Ashutosh V, ANDERSSON Pher G. A new class of bis-oxazoline ligands for the Cu-catalysed asymmetric cyclopropanation of olefins[J]. Tetrahedron Letters, 1996, 37(23): 4073-4076. |
12 | ARLT D, JAUTELAT M, LANTZSCH R. ChemInform abstract: syntheses of pyrethroid acids[J]. Chemischer Informationsdienst, 1981, 12(51): 703-722. |
13 | CHEN Ying, ZHANG X Peter. Vitamin B12 derivatives as natural asymmetric catalysts: enantioselective cyclopropanation of alkenes[J]. The Journal of Organic Chemistry, 2004, 69(7): 2431-2435. |
14 | 孙越. 铁(Ⅲ)催化二氟乙醛N-磺酰腙(DFHZ)与烯烃的环丙烷化反应研究[D]. 长春: 东北师范大学, 2020. |
SUN Yue. Study on cyclopropane reaction of difluoroacetaldehyde N-sulfonylhydrazone (DFHZ) with olefins catalyzed by iron ( Ⅲ )[D]. Changchun: Northeast Normal University, 2020. | |
15 | 刘纪娜. 金属卟啉催化芳香烯烃的环丙烷化反应与机理研究[D]. 长沙: 湖南大学, 2015. |
LIU Jina. Study on cyclopropanation and mechanism of olefins catalyzed by metalloporphyrins[D]. Changsha: Hunan University, 2015. | |
16 | 边庆花, 乔振, 侯士聪, 等. 环丙烷化反应中催化剂固载化的研究进展[J]. 有机化学, 2004, 24(7): 831-841, 712. |
BIAN Qinghua, QIAO Zhen, HOU Shicong, et al. Advances of immobilization of catalysts for cyclopropanation[J]. Chinese Journal of Organic Chemistry, 2004, 24(7): 831-841, 712. | |
17 | HANTZSCH A, SILBERRAD O. Ueber die polymerisationsproducte aus diazoessigester[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1900, 33(1): 58-89. |
18 | HENNE Albert L, TURK Amos. Conjugated diolefins by double bond displacement[J]. Journal of the American Chemical Society, 1942, 64(4): 826-828. |
19 | WENKERT Ernest, GUO Ming, PIZZO Ferdinando, et al. Synthesis of 2-cycloalkenones (parts of 1,4-diacyl-1,3-butadiene systems) and of a heterocyclic analogue by metal-catalyzed decomposition of 2-diazoacylfurans[J]. Helvetica Chimica Acta, 1987, 70(5): 1429-1438. |
20 | CHEN Longrui, BOVEE Mark O, LEMMA Betsegaw E, et al. An inexpensive and recyclable silver-foil catalyst for the cyclopropanation of alkenes with diazoacetates under mechanochemical conditions[J]. Angewandte Chemie International Edition, 2015, 54(38): 11084-11087. |
21 | CHEN Longrui, LESLIE Devonna, COLEMAN Michael G, et al. Recyclable heterogeneous metal foil-catalyzed cyclopropenation of alkynes and diazoacetates under solvent-free mechanochemical reaction conditions[J]. Chemical Science, 2018, 9(20): 4650-4661. |
22 | FRAILE J M, GARCÍA B, GARCÍA J I, et al. The use of heterogeneous copper catalysts in cyclopropanation reactions[J]. Studies in Surface Science and Catalysis, 1997, 108: 571-578. |
23 | LIU Xiang, LIU Yan, LI Xiaohong, et al. Cyclopropanation on a highly active heterogeneous catalyst: CuO/TiO2-Al2O3 [J]. Applied Catalysis A: General, 2003, 239(1/2): 279-286. |
24 | LAKSHMI KANTAM M, SWARNA JAYA V, JAYA LAKSHMI M, et al. Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions[J]. Catalysis Communications, 2007, 8(12): 1963-1968. |
25 | ISHIKAWA Shingo, HUDSON Reuben, MASNADI Mitra, et al.Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles[J]. Tetrahedron, 2014, 70(36): 6162-6168. |
26 | SARKAR Abhijnan, FORMENTI Dario, FERRETTI Francesco, et al. Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins[J]. Chemical Science, 2020, 11(24): 6217-6221. |
27 | FELDMAN Robert A, FRAILE José M. Electrostatic immobilization of bis(oxazoline)-copper complexes on mesoporous crystalline materials: Cation exchange vs. incipient wetness methods[J]. Applied Catalysis A: General, 2014, 485: 67-73. |
28 | MANDOLI Alessandro, ORLANDI Simonetta, PINI Dario, et al. A reusable, insoluble polymer-bound bis(oxazoline)(IPB-box) for highly enantioselective heterogeneous cyclopropanation reactions[J]. Chemical Communications, 2003(19): 2466-2467. |
29 | MANDOLI Alessandro, ORLANDI Simonetta, PINI Dario, et al. Insoluble polystyrene-bound bis(oxazoline): Batch and continuous-flow heterogeneous enantioselective glyoxylate-ene reaction[J]. Tetrahedron: Asymmetry, 2004, 15(20): 3233-3244. |
30 | Isabel BURGUETE M, FRAILE José M, GARCÍA José I, et al. Bis(oxazoline)copper complexes covalently bonded to insoluble support as catalysts in cyclopropanation reactions[J]. The Journal of Organic Chemistry, 2001, 66(26): 8893-8901. |
31 | BURGUETE M I, FRAILE J M, GARCÍA-VERDUGO E, et al. Polymer-supported bis(oxazolines) and related systems: Toward new heterogeneous enantioselective catalysts[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8580-8587. |
32 | WERNER Heiko, HERRERÍAS Clara I, GLOS Michael, et al. Synthesis of polymer bound azabis(oxazoline) ligands and their application in asymmetric cyclopropanations[J]. Advanced Synthesis & Catalysis, 2006, 348(1/2): 125-132. |
33 | MOTOYAMA Y, NISHIKATA T, NAGASHIMA H. A chiral bis(oxazoline) ligand embedded into polysiloxane gel: Application to a reusable copper catalyst for asymmetric cyclopropanation[J]. Chemistry-An Asian Journal, 2011, 6(1): 78-82. |
34 | FRAILE José M, GARCı́A José I, MAYORAL José A, et al. Clay-supported bis(oxazoline)-copper complexes as heterogeneous catalysts of enantioselective cyclopropanation reactions[J]. Tetrahedron: Asymmetry, 1998, 9(22): 3997-4008. |
35 | FERNÁNDEZ M J, FRAILE J M, GARCÍA J I, et al. Enantioselective cyclopropanation reactions promoted by immobilized bis(oxazoline)-copper complexes[J]. Topics in Catalysis, 2000, 13(3): 303-309. |
36 | Rosario TORVISO M, MANSILLA Daniela S, FRAILE José M, et al. The importance of copper placement in chiral catalysts supported on heteropolyanions: Lacunary vs external exchanged[J]. Molecular Catalysis, 2020, 489: 110935. |
37 | FRAILE José M, GARCÍA José I, MAYORAL José A, et al. Bis(oxazoline)-copper complexes, supported by electrostatic interactions, as heterogeneous catalysts for enantioselective cyclopropanation reactions: Influence of the anionic support[J]. Journal of Catalysis, 1999, 186(1): 214-221. |
38 | FELDMAN Robert A, FRAILE José M. Improved methodology for non-covalent immobilization of tert-butyl-azabis(oxazoline)-copper complex on Al-MCM41[J]. Applied Catalysis A: General, 2015, 502: 166-173. |
39 | FAKHFAKH Fatma, BARAKET Leila, GHORBEL Abdelhamid, et al. Catalytic activity of copper-bis(oxazoline) grafted on mesoporous silica in enantioselective cyclopropanation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1): 119-130. |
40 | FAKHFAKH Fatma, BARAKET Leila, GHORBEL Abdelhamid, et al. Effect of support properties on the performance of silica-supported bis(oxazoline)-copper chiral complexes[J]. Journal of Molecular Catalysis A: Chemical, 2010, 329(1/2): 21-26. |
41 | ALBUQUERQUE Hélio, CARNEIRO Liliana, CARVALHO Ana P, et al. Enantioselective cyclopropanation and aziridination catalyzed by copper(Ⅱ) bis(oxazoline) anchored onto mesoporous materials[J]. Polyhedron, 2014, 79: 315-323. |
42 | SILVA Ana Rosa, ALBUQUERQUE Hélio, BORGES Susana, et al. Strategies for copper bis(oxazoline) immobilization onto porous silica based materials[J]. Microporous and Mesoporous Materials, 2012, 158: 26-38. |
43 | SILVA Ana Rosa, ALBUQUERQUE Hélio, FONTES André, et al. Copper bis(oxazoline) encapsulated in zeolites and its application as heterogeneous catalysts for the cyclopropanation of styrene[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11495-11501. |
44 | 张永忠, 钟江春, 边庆花, 等. 离子液体支载的催化剂在不对称合成反应中循环使用的研究进展[J]. 有机化学, 2006, 26(10): 1362-1369. |
ZHANG Yongzhong, ZHONG Jiangchun, BIAN Qinghua, et al. Recycle application of catalyst supported by ionic liquids to asymmetric reaction[J]. Chinese Journal of Organic Chemistry, 2006, 26(10): 1362-1369. | |
45 | FRAILE José M, GARCÍA José I, HERRERÍAS Clara I, et al. Comparison of the immobilization of chiral bis(oxazoline)-copper complexes onto anionic solids and in ionic liquids[J]. Green Chemistry, 2004, 6(2): 93-98. |
46 | FRAILE José M, GARCı́A José I, HERRERı́AS Clara I, et al. Enantioselective cyclopropanation reactions in ionic liquids[J]. Tetrahedron: Asymmetry, 2001, 12(13): 1891-1894. |
47 | DAVIES David L, KANDOLA Sukhvinder K, PATEL Raj K. Asymmetric cyclopropanation in ionic liquids: Effect of anion and impurities[J]. Tetrahedron: Asymmetry, 2004, 15(1): 77-80. |
48 | GARCÍA José I, Beatriz LÓPEZ-SÁNCHEZ, MAYORAL José A, et al. Surface confinement effects in enantioselective catalysis: Design of new heterogeneous chiral catalysts based on C1-symmetric bisoxazolines and their application in cyclopropanation reactions[J]. Journal of Catalysis, 2008, 258(2): 378-385. |
49 | CORNEJO Alfonso, FRAILE José M, GARCı́A José I, et al. Surface-mediated improvement of enantioselectivity with clay-immobilized copper catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003, 196(1/2): 101-108. |
50 | 孙伟, 夏春谷, 王爱勤. 壳聚糖希夫碱铜多相催化剂催化苯乙烯环丙烷化反应研究[J]. 化学学报, 2002, 60(1): 162-165, 13. |
SUN Wei, XIA Chungu, WANG Aiqin. Cyclopropanation of styrene catalyzed by chitosan Schiff-base copper (Ⅰ) heterogeneous catalyst [J]. Acta Chimica Sinica, 2002, 60(1):162-165, 13. | |
51 | CABALLERO Ana, SABATER Mariano, Esther MORILLA M, et al. Hydrotrispyrazolylborate-copper complexes as catalysts for the styrene cyclopropanation reaction with ethyl diazoacetate under homogeneous and heterogeneous conditions[J]. Inorganica Chimica Acta, 2009, 362(12): 4599-4602. |
52 | SYUKRI Syukri, FISCHER Christian E, HMAIDEEN Akef AL, et al. Modified MCM-41-supported acetonitrile ligated copper(Ⅱ) and its catalytic activity in cyclopropanation of olefins [J]. Microporous and Mesoporous Materials, 2008, 113(1): 171-177. |
53 | SYUKRI Syukri, HIJAZI Ahmed K, SAKTHIVEL Ayyamperumal, et al. Heterogenization of solvent-ligated copper(Ⅱ) complexes on poly(4-vinylpyridine) for the catalytic cyclopropanation of olefins[J]. Inorganica Chimica Acta, 2007, 360(1): 197-202. |
54 | SAKTHIVEL Ayyamperumal, SYUKRI S, HIJAZI Ahmed K, et al. Heterogenization of [Cu(NCCH3)4][BF4]2 on mesoporous AlMCM-41/AlMCM-48 and its application as cyclopropanation catalyst[J]. Catalysis Letters, 2006, 111(1/2): 43-49. |
55 | CASTANO Brunilde, ZARDI Paolo, HÖNEMANN Yvonne C, et al. Silica “SHB” chiral Pc-L* copper complexes for halogen-free solvent cyclopropanation reactions [J]. RSC Advances, 2013, 3(44): 22199-22205. |
56 | 朱新举, 牛俊龙, 赵雪梅, 等. 联苯骨架手性双咪唑啉配体的合成及在不对称环丙烷化中的应用[J]. 有机化学, 2018, 38(1): 118-123. |
ZHU Xinju, NIU Junlong, ZHAO Xuemei, et al. Synthesis of chiral bis(imidazoline) ligands with biphenyl backbone and their application in the asymmetric cyclopropanation reaction[J]. Chinese Journal of Organic Chemistry, 2018, 38(1): 118-123. | |
57 | Lorenz RÖSLER, HÖFLER Mark V, BREITZKE Hergen, et al. Dirhodium complex immobilization on modified cellulose for highly selective heterogeneous cyclopropanation reactions[J]. Cellulose, 2022, 29(11): 6283-6299. |
58 | DAVIES Huw M L, WALJI Abbas M, NAGASHIMA Tadamichi. Simple strategy for the immobilization of dirhodium tetraprolinate catalysts using a pyridine-linked solid support[J]. Journal of the American Chemical Society, 2004, 126(13): 4271-4280. |
59 | GUTMANN Torsten, LIU Jiquan, ROTHERMEL Niels, et al. Natural abundance 15N NMR by dynamic nuclear polarization: Fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst[J]. Chemistry-A Europen Journal, 2015, 21(9): 3798-3805. |
60 | LIU Jiquan, GROSZEWICZ Pedro B, WEN Qingbo, et al. Revealing structure reactivity relationships in heterogenized dirhodium catalysts by solid-state NMR techniques[J]. The Journal of Physical Chemistry C, 2017, 121(32): 17409-17416. |
61 | LI Zhenzhong, Lorenz RÖSLER, WISSEL Till, et al. Immobilization of a chiral dirhodium catalyst on SBA-15 via click-chemistry: Application in the asymmetric cyclopropanation of 3-diazooxindole with aryl alkenes[J]. Journal of CO2 Utilization, 2021, 52: 101682. |
62 | Jiquan LIU , PLOG Andreas, GROSZEWICZ Pedro, et al. Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: Synthesis and solid-state NMR characterization[J]. Chemistry-A European Journal, 2015, 21(35): 12414-12420. |
63 | LEVCHENKO Vladimir, Bård SUNDSLI, Sigurd ØIEN-ØDEGAARD, et al. Bottom-up synthesis of acrylic and styrylic RhⅡ carboxylate polymer beads: Solid-supported analogs of Rh2(OAc)4 [J]. European Journal of Organic Chemistry, 2018, 2018(44): 6150-6157. |
64 | ALCÓN M J, CORMA A, IGLESIAS Marta, et al. From homogeneous to heterogeneous catalysis: zeolite supported metal complexes with C2-multidentate nitrogen ligands. Application as catalysts for olefin hydrogenation and cyclopropanation reactions[J]. Journal of Organometallic Chemistry, 2002, 655(1/2): 134-145. |
65 | CIAMMAICHELLA Alina, CARDONI Valeria, LEONI Aessandro, et al. Rhodium porphyrin bound to a Merrifield resin as heterogeneous catalyst for the cyclopropanation reaction of olefins[J]. Molecules, 2016, 21(3): 278. |
66 | GILL Christopher S, VENKATASUBBAIAH Krishnan, JONES Christopher W. Recyclable polymer- and silica-supported ruthenium(Ⅱ)-salen bis-pyridine catalysts for the asymmetric cyclopropanation of olefins[J]. Advanced Synthesis & Catalysis, 2009, 351(9): 1344-1354. |
67 | ZHANG Junlong, LIU Yunling, CHE Chiming. Chiral ruthenium porphyrin encapsulated in ordered mesoporous molecular sieves (MCM-41 and MCM-48) as catalysts for asymmetric alkene epoxidation and cyclopropanation[J]. Chemical Communications, 2002(23): 2906-2907. |
68 | CASELLI Alessandro, BUONOMENNA Maria Giovanna, DE BALDIRONI Federico, et al. From homogeneously to heterogeneously catalyzed cyclopropanation reactions: New polymeric membranes embedding cobalt chiral schiff base complexes[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1/2): 72-80. |
69 | CORMA Avelino, IGLESIAS Marta, LIABRÉS I XAMENA Francesc X, et al. Cu and Au metal-organic frameworks bridge the gap between homogeneous and heterogeneous catalysts for alkene cyclopropanation reactions[J]. Chemistry-A European Journal, 2010, 16(32): 9789-9795. |
70 | HEINZ Werner R, JUNK Raphael, Iker AGIRREZABAL-TELLERIA, et al. Thermal defect engineering of precious group metal–organic frameworks: impact on the catalytic cyclopropanation reaction[J]. Catalysis Science & Technology, 2020, 10(23): 8077-8085. |
71 | SHI Fanian, SILVA Ana Rosa, ROCHA João. Metal-organic framework based on copper(Ⅰ) sulfate and 4,4'-bipyridine catalyzes the cyclopropanation of styrene[J]. Journal of Solid State Chemistry, 2011, 184(8): 2196-2203. |
72 | Konstantin EPP, BUEKEN Bart, HOFMANN Benjamin J, et al. Network topology and cavity confinement-controlled diastereoselectivity in cyclopropanation reactions catalyzed by porphyrin-based MOFs[J]. Catalysis Science & Technology, 2019, 9(22): 6452-6459. |
73 | STEENHAUT Timothy, Nicolas GRÉGOIRE, Gabriella BAROZZINO-CONSIGLIO, et al. Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation[J]. RSC Advances, 2020, 10(34): 19822-19831. |
74 | FAN Zhiying, WANG Junjun, WANG Weijia, et al. Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100: Implementing truncated linkers and its effect on catalytic properties[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37993-38002. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[3] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[4] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[5] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[6] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[7] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[8] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[9] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[10] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[11] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[12] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[13] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[14] | 于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. |
[15] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |