化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2402-2412.DOI: 10.16085/j.issn.1000-6613.2022-1312
王科菊1,2(), 赵成2, 胡晓玫2, 云军阁2,3, 魏凝涵1,2, 姜雪迎1,2, 邹昀1(), 陈志航2()
收稿日期:
2022-07-12
修回日期:
2022-10-23
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
邹昀,陈志航
作者简介:
王科菊(1997—),男,硕士研究生,研究方向为大气污染控制。E-mail:351924900@qq.com。
基金资助:
WANG Keju1,2(), ZHAO Cheng2, HU Xiaomei2, YUN Junge2,3, WEI Ninghan1,2, JIANG Xueying1,2, ZOU Yun1(), CHEN Zhihang2()
Received:
2022-07-12
Revised:
2022-10-23
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZOU Yun, CHEN Zhihang
摘要:
一直以来,开发强氧化活性和高抗性的金属氧化物催化剂都是催化脱除挥发性有机化合物(VOCs)领域的研究热点。本文从氧空位、活性氧物种、结构和晶面等角度,比较分析了催化剂的组成比例、形貌、焙烧温度、制备方法和载体等制备因素对增强催化氧化VOCs活性和二氧化碳选择性的影响。阐述了实际工况中的水蒸气、氮氧化物和二氧化硫在氧化反应过程中的中毒机制。展望了利用DFT计算,深入探索氧空位、晶格氧和表面吸附氧在VOCs催化氧化过程中的作用机理,并从活性组分分散度、高活性晶面占比、氧空位强度等关键方面来指导优化催化剂,为相关催化体系的研发提供了科学参考。
中图分类号:
王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412.
WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412.
催化剂 | 污染物 | 浓度/μL·L-1 | 空速/mL∙g-1∙h-1 | T90/℃ | Oads/Olatt | 参考文献 |
---|---|---|---|---|---|---|
MnO2 | 甲苯 | 1000 | 40000 | 228 | 0.78 | [ |
Co-MnO2 | 甲苯 | 1000 | 40000 | 227 | 0.86 | [ |
Ce-MnO2 | 甲苯 | 1000 | 40000 | 234 | 0.57 | [ |
Cu-MnO2 | 甲苯 | 1000 | 40000 | 219 | 1.07 | [ |
Co3O4 | 甲苯 | 1000 | 78000 | 249 | 0.88 | [ |
CuCo2O4 | 甲苯 | 1000 | 78000 | 221 | 1.12 | [ |
NiCo2O4 | 甲苯 | 1000 | 78000 | 234 | 1.07 | [ |
ZnCo2O4 | 甲苯 | 1000 | 78000 | 279 | 0.80 | [ |
表1 VOCs在不同金属掺杂的催化剂上催化氧化的条件和性能
催化剂 | 污染物 | 浓度/μL·L-1 | 空速/mL∙g-1∙h-1 | T90/℃ | Oads/Olatt | 参考文献 |
---|---|---|---|---|---|---|
MnO2 | 甲苯 | 1000 | 40000 | 228 | 0.78 | [ |
Co-MnO2 | 甲苯 | 1000 | 40000 | 227 | 0.86 | [ |
Ce-MnO2 | 甲苯 | 1000 | 40000 | 234 | 0.57 | [ |
Cu-MnO2 | 甲苯 | 1000 | 40000 | 219 | 1.07 | [ |
Co3O4 | 甲苯 | 1000 | 78000 | 249 | 0.88 | [ |
CuCo2O4 | 甲苯 | 1000 | 78000 | 221 | 1.12 | [ |
NiCo2O4 | 甲苯 | 1000 | 78000 | 234 | 1.07 | [ |
ZnCo2O4 | 甲苯 | 1000 | 78000 | 279 | 0.80 | [ |
催化剂 | 金属比例 | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90/℃ | 参考 文献 |
---|---|---|---|---|---|---|
CuMnO x | Cu/Mn=0∶1 | 甲苯 | 500 | 22500 | 229 | [ |
CuMnO x | Cu/Mn=0.06∶1 | 甲苯 | 500 | 22500 | 226 | [ |
CuMnO x | Cu/Mn=0.08∶1 | 甲苯 | 500 | 22500 | 225 | [ |
CuMnO x | Cu/Mn=0.10∶1 | 甲苯 | 500 | 22500 | 216 | [ |
CuMnO x | Cu/Mn=0.12∶1 | 甲苯 | 500 | 22500 | 223 | [ |
MnCoO x | Mn/Co=0∶1 | 甲苯 | 1000 | 40000 | 246 | [ |
MnCoO x | Mn/Co=0.2∶0.8 | 甲苯 | 1000 | 40000 | 227 | [ |
MnCoO x | Mn/Co=0.3∶0.7 | 甲苯 | 1000 | 40000 | 220 | [ |
MnCoO x | Mn/Co=0.4∶0.6 | 甲苯 | 1000 | 40000 | 215 | [ |
MnCoO x | Mn/Co=0.5∶0.5 | 甲苯 | 1000 | 40000 | 219 | [ |
FeMnO x | Fe/Mn=0∶1 | 氯苯 | 600 | 20000① | 310 | [ |
FeMnO x | Fe/Mn=1∶8 | 氯苯 | 600 | 20000① | 340 | [ |
FeMnO x | Fe/Mn=1∶1 | 氯苯 | 600 | 20000① | 197 | [ |
FeMnO x | Fe/Mn=2∶1 | 氯苯 | 600 | 20000① | 295 | [ |
FeMnO x | Fe/Mn=1∶0 | 氯苯 | 600 | 20000① | >400 | [ |
表2 VOCs在不同金属比例的催化剂上催化氧化的条件和性能
催化剂 | 金属比例 | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90/℃ | 参考 文献 |
---|---|---|---|---|---|---|
CuMnO x | Cu/Mn=0∶1 | 甲苯 | 500 | 22500 | 229 | [ |
CuMnO x | Cu/Mn=0.06∶1 | 甲苯 | 500 | 22500 | 226 | [ |
CuMnO x | Cu/Mn=0.08∶1 | 甲苯 | 500 | 22500 | 225 | [ |
CuMnO x | Cu/Mn=0.10∶1 | 甲苯 | 500 | 22500 | 216 | [ |
CuMnO x | Cu/Mn=0.12∶1 | 甲苯 | 500 | 22500 | 223 | [ |
MnCoO x | Mn/Co=0∶1 | 甲苯 | 1000 | 40000 | 246 | [ |
MnCoO x | Mn/Co=0.2∶0.8 | 甲苯 | 1000 | 40000 | 227 | [ |
MnCoO x | Mn/Co=0.3∶0.7 | 甲苯 | 1000 | 40000 | 220 | [ |
MnCoO x | Mn/Co=0.4∶0.6 | 甲苯 | 1000 | 40000 | 215 | [ |
MnCoO x | Mn/Co=0.5∶0.5 | 甲苯 | 1000 | 40000 | 219 | [ |
FeMnO x | Fe/Mn=0∶1 | 氯苯 | 600 | 20000① | 310 | [ |
FeMnO x | Fe/Mn=1∶8 | 氯苯 | 600 | 20000① | 340 | [ |
FeMnO x | Fe/Mn=1∶1 | 氯苯 | 600 | 20000① | 197 | [ |
FeMnO x | Fe/Mn=2∶1 | 氯苯 | 600 | 20000① | 295 | [ |
FeMnO x | Fe/Mn=1∶0 | 氯苯 | 600 | 20000① | >400 | [ |
催化剂 | 焙烧温度 /℃ | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90/℃ | ID/I2g | 参考 文献 |
---|---|---|---|---|---|---|---|
Co3O4 | 300 | 甲苯 | 1000 | 40000 | 240 | — | [ |
Co3O4 | 350 | 甲苯 | 1000 | 40000 | 251 | — | [ |
Co3O4 | 400 | 甲苯 | 1000 | 40000 | 260 | — | [ |
Fe1Mn4 | 300 | 甲苯 | 500 | 100000 | — | 0.93 | [ |
Fe1Mn4 | 400 | 甲苯 | 500 | 100000 | — | 0.91 | [ |
Fe1Mn4 | 500 | 甲苯 | 500 | 100000 | — | 0.87 | [ |
Cu1Co2Fe1O x | 400 | 甲苯 | 800 | 60000 | 238 | — | [ |
Cu1Co2Fe1O x | 500 | 甲苯 | 800 | 60000 | 246 | — | [ |
Cu1Co2Fe1O x | 600 | 甲苯 | 800 | 60000 | 289 | — | [ |
Cu1Co2Fe1O x | 700 | 甲苯 | 800 | 60000 | 322 | — | [ |
表3 VOCs在不同焙烧温度的催化剂上催化氧化的条件和性能
催化剂 | 焙烧温度 /℃ | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90/℃ | ID/I2g | 参考 文献 |
---|---|---|---|---|---|---|---|
Co3O4 | 300 | 甲苯 | 1000 | 40000 | 240 | — | [ |
Co3O4 | 350 | 甲苯 | 1000 | 40000 | 251 | — | [ |
Co3O4 | 400 | 甲苯 | 1000 | 40000 | 260 | — | [ |
Fe1Mn4 | 300 | 甲苯 | 500 | 100000 | — | 0.93 | [ |
Fe1Mn4 | 400 | 甲苯 | 500 | 100000 | — | 0.91 | [ |
Fe1Mn4 | 500 | 甲苯 | 500 | 100000 | — | 0.87 | [ |
Cu1Co2Fe1O x | 400 | 甲苯 | 800 | 60000 | 238 | — | [ |
Cu1Co2Fe1O x | 500 | 甲苯 | 800 | 60000 | 246 | — | [ |
Cu1Co2Fe1O x | 600 | 甲苯 | 800 | 60000 | 289 | — | [ |
Cu1Co2Fe1O x | 700 | 甲苯 | 800 | 60000 | 322 | — | [ |
催化剂 | 制备方法 | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90 /℃ | 参考文献 |
---|---|---|---|---|---|---|
CeO2-M | 原位热解法 | 甲苯 | 1000 | 20000 | 223 | [ |
CeO2-P | 沉淀法 | 甲苯 | 1000 | 20000 | 280 | [ |
CeMn-IM | 浸渍法 | 甲苯 | 500 | 60000① | 261 | [ |
CeMn-CP | 共沉淀法 | 甲苯 | 500 | 60000① | 259 | [ |
CeMn-SG | 溶胶凝胶法 | 甲苯 | 500 | 60000① | 249 | [ |
CeMn-HT | 水热法 | 甲苯 | 500 | 60000① | 246 | [ |
MnCu0.5 | 水热氧化还原法 | 甲苯 | 1000 | 40000 | 210 | [ |
MnCu0.75-H2O2 | 氧化还原沉淀法 | 甲苯 | 1000 | 40000 | 236 | [ |
MnCu0.75-P | 共沉淀法 | 甲苯 | 1000 | 40000 | 240 | [ |
Cu0.4Ce0.6-DR | 双氧化还原法 | 甲苯 | 500 | 50000 | 约246 | [ |
Cu0.4Ce0.6-C | 共沉淀法 | 甲苯 | 500 | 50000 | 约270 | [ |
表4 VOCs在不同制备方法合成的催化剂上催化氧化的条件和性能
催化剂 | 制备方法 | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90 /℃ | 参考文献 |
---|---|---|---|---|---|---|
CeO2-M | 原位热解法 | 甲苯 | 1000 | 20000 | 223 | [ |
CeO2-P | 沉淀法 | 甲苯 | 1000 | 20000 | 280 | [ |
CeMn-IM | 浸渍法 | 甲苯 | 500 | 60000① | 261 | [ |
CeMn-CP | 共沉淀法 | 甲苯 | 500 | 60000① | 259 | [ |
CeMn-SG | 溶胶凝胶法 | 甲苯 | 500 | 60000① | 249 | [ |
CeMn-HT | 水热法 | 甲苯 | 500 | 60000① | 246 | [ |
MnCu0.5 | 水热氧化还原法 | 甲苯 | 1000 | 40000 | 210 | [ |
MnCu0.75-H2O2 | 氧化还原沉淀法 | 甲苯 | 1000 | 40000 | 236 | [ |
MnCu0.75-P | 共沉淀法 | 甲苯 | 1000 | 40000 | 240 | [ |
Cu0.4Ce0.6-DR | 双氧化还原法 | 甲苯 | 500 | 50000 | 约246 | [ |
Cu0.4Ce0.6-C | 共沉淀法 | 甲苯 | 500 | 50000 | 约270 | [ |
催化剂 | 载体 | 污染物 | 浓度/μL·L-1 | 空速/mL∙g-1∙h-1 | T90/℃ | 参考文献 |
---|---|---|---|---|---|---|
MnO x /HZ-5 | 纳米中空HZSM-5 | 甲苯 | 1000 | 15000 | 255 | [ |
MnO x /MZ-5 | 微米HZSM-5 | 甲苯 | 1000 | 15000 | 282 | [ |
Co3O4 | — | 丙烷 | — | 80000 | >400 | [ |
Co3O4/ZSM-5 | ZSM-5 | 丙烷 | — | 80000 | 360 | [ |
Co3O4/Silicalite-1 | Silicalite-1 | 二氯甲烷 | 1000 | 30000 | 420 | [ |
Co3O4/ZSM-5 | ZSM-5 | 二氯甲烷 | 1000 | 30000 | 370 | [ |
Co3O4/TS-1 | TS-1 | 二氯甲烷 | 1000 | 30000 | 406 | [ |
Mn/Ce-Zr(C-T-1) | 界面CeO2-ZrO2 | 甲苯 | 1000 | 30000 | 254 | [ |
Mn/Ce-Zr-ss | 简单CeO2-ZrO2 | 甲苯 | 1000 | 30000 | 288 | [ |
Co3O4/TiO2 | TiO2 | 甲苯 | 1000 | 60000 | 377 | [ |
Co3O4/YSZ | YSZ | 甲苯 | 1000 | 60000 | 280 | [ |
Co3O4 | — | 甲苯 | 1000 | 60000 | 312 | [ |
表5 VOCs在不同载体的催化剂上催化氧化的条件和性能
催化剂 | 载体 | 污染物 | 浓度/μL·L-1 | 空速/mL∙g-1∙h-1 | T90/℃ | 参考文献 |
---|---|---|---|---|---|---|
MnO x /HZ-5 | 纳米中空HZSM-5 | 甲苯 | 1000 | 15000 | 255 | [ |
MnO x /MZ-5 | 微米HZSM-5 | 甲苯 | 1000 | 15000 | 282 | [ |
Co3O4 | — | 丙烷 | — | 80000 | >400 | [ |
Co3O4/ZSM-5 | ZSM-5 | 丙烷 | — | 80000 | 360 | [ |
Co3O4/Silicalite-1 | Silicalite-1 | 二氯甲烷 | 1000 | 30000 | 420 | [ |
Co3O4/ZSM-5 | ZSM-5 | 二氯甲烷 | 1000 | 30000 | 370 | [ |
Co3O4/TS-1 | TS-1 | 二氯甲烷 | 1000 | 30000 | 406 | [ |
Mn/Ce-Zr(C-T-1) | 界面CeO2-ZrO2 | 甲苯 | 1000 | 30000 | 254 | [ |
Mn/Ce-Zr-ss | 简单CeO2-ZrO2 | 甲苯 | 1000 | 30000 | 288 | [ |
Co3O4/TiO2 | TiO2 | 甲苯 | 1000 | 60000 | 377 | [ |
Co3O4/YSZ | YSZ | 甲苯 | 1000 | 60000 | 280 | [ |
Co3O4 | — | 甲苯 | 1000 | 60000 | 312 | [ |
催化剂 | 形貌 | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90 /℃ | 参考文献 |
---|---|---|---|---|---|---|
CeO2-S | 球形 | 苯乙烯 | 600 | 15000 | 184 | [ |
CeO2-R | 棒状 | 苯乙烯 | 600 | 15000 | 219 | [ |
CeO2-O | 八面体 | 苯乙烯 | 600 | 15000 | 221 | [ |
CeO2-C | 立方体 | 苯乙烯 | 600 | 15000 | >350 | [ |
Co3O4-R | 棒状 | 邻二甲苯 | 100 | 120000 | 270 | [ |
Co3O4-S | 球形 | 邻二甲苯 | 100 | 120000 | 295 | [ |
MnO2-PS | 多孔纳米片 | 丙烷 | 2000 | 30000 | 235 | [ |
MnO2-R | 棒状 | 丙烷 | 2000 | 30000 | 295 | [ |
MnO2-B | 块状 | 丙烷 | 2000 | 30000 | 318 | [ |
Ce1Mn2 | 核壳结构 | 甲苯 | 1000 | 60000 | 245 | [ |
CeO2 | — | 甲苯 | 1000 | 60000 | 315 | [ |
MnO2 | — | 甲苯 | 1000 | 60000 | 290 | [ |
CeO2@Co3O4 | 核壳结构 | 甲苯 | 2000 | 20000 | 225 | [ |
CeO2 | — | 甲苯 | 2000 | 20000 | >300 | [ |
Co3O4 | — | 甲苯 | 2000 | 20000 | 285 | [ |
表6 VOCs在不同形貌的催化剂上催化氧化的条件和性能
催化剂 | 形貌 | 污染物 | 浓度 /μL·L-1 | 空速 /mL∙g-1∙h-1 | T90 /℃ | 参考文献 |
---|---|---|---|---|---|---|
CeO2-S | 球形 | 苯乙烯 | 600 | 15000 | 184 | [ |
CeO2-R | 棒状 | 苯乙烯 | 600 | 15000 | 219 | [ |
CeO2-O | 八面体 | 苯乙烯 | 600 | 15000 | 221 | [ |
CeO2-C | 立方体 | 苯乙烯 | 600 | 15000 | >350 | [ |
Co3O4-R | 棒状 | 邻二甲苯 | 100 | 120000 | 270 | [ |
Co3O4-S | 球形 | 邻二甲苯 | 100 | 120000 | 295 | [ |
MnO2-PS | 多孔纳米片 | 丙烷 | 2000 | 30000 | 235 | [ |
MnO2-R | 棒状 | 丙烷 | 2000 | 30000 | 295 | [ |
MnO2-B | 块状 | 丙烷 | 2000 | 30000 | 318 | [ |
Ce1Mn2 | 核壳结构 | 甲苯 | 1000 | 60000 | 245 | [ |
CeO2 | — | 甲苯 | 1000 | 60000 | 315 | [ |
MnO2 | — | 甲苯 | 1000 | 60000 | 290 | [ |
CeO2@Co3O4 | 核壳结构 | 甲苯 | 2000 | 20000 | 225 | [ |
CeO2 | — | 甲苯 | 2000 | 20000 | >300 | [ |
Co3O4 | — | 甲苯 | 2000 | 20000 | 285 | [ |
催化剂 | 甲苯浓度/μL·L-1 | NO x 浓度/μL·L-1 | 空速/mL∙g-1∙h-1 | 甲苯转化温度(未引入NO x )/℃ | 甲苯转化温度(引入NO x )/℃ | 参考文献 |
---|---|---|---|---|---|---|
Mn/CeO2 | 100 | 500 | 10000 | T80=215 | T 80=226 | [ |
Mn/TiO2 | 100 | 500 | 10000 | T 80=239 | T 80=247 | [ |
Mn2Cu1Al1O x | 800 | 100 | 60000① | T 100=250 | T 94=250 | [ |
MnO x -CeO2 | 50 | 500 | 60000 | T 47=150 | T 26=150 | [ |
CuCeAl x | 1000 | 600 | 50000① | T 90≈300 | T 90≈250 | [ |
表7 引入氮氧化物对不同催化剂上甲苯催化氧化性能的影响
催化剂 | 甲苯浓度/μL·L-1 | NO x 浓度/μL·L-1 | 空速/mL∙g-1∙h-1 | 甲苯转化温度(未引入NO x )/℃ | 甲苯转化温度(引入NO x )/℃ | 参考文献 |
---|---|---|---|---|---|---|
Mn/CeO2 | 100 | 500 | 10000 | T80=215 | T 80=226 | [ |
Mn/TiO2 | 100 | 500 | 10000 | T 80=239 | T 80=247 | [ |
Mn2Cu1Al1O x | 800 | 100 | 60000① | T 100=250 | T 94=250 | [ |
MnO x -CeO2 | 50 | 500 | 60000 | T 47=150 | T 26=150 | [ |
CuCeAl x | 1000 | 600 | 50000① | T 90≈300 | T 90≈250 | [ |
催化剂 | (Oα/O)/% | ΔOα/% | (V5+/V)/% | (SO |
---|---|---|---|---|
V-Cu/ZSM-5 | 48.86 | — | 72.25 | — |
Cu/ZSM-5 | 38.95 | — | — | — |
V-Cu/ZSM-5-使用后 | 53.17 | 4.31 | 63.32 | 52.36 |
Cu/ZSM-5-使用后 | 58.89 | 19.94 | — | 64.55 |
表8 新鲜样品和引入SO2之后样品的表面成分[62]
催化剂 | (Oα/O)/% | ΔOα/% | (V5+/V)/% | (SO |
---|---|---|---|---|
V-Cu/ZSM-5 | 48.86 | — | 72.25 | — |
Cu/ZSM-5 | 38.95 | — | — | — |
V-Cu/ZSM-5-使用后 | 53.17 | 4.31 | 63.32 | 52.36 |
Cu/ZSM-5-使用后 | 58.89 | 19.94 | — | 64.55 |
1 | YE Z, J-M GIRAUDON, NUNS N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 154-166. |
2 | PARK E J, SEO H O, KIM Y D. Influence of humidity on the removal of volatile organic compounds using solid surfaces[J]. Catalysis Today, 2017, 295: 3-13. |
3 | WU P, JIN X J, QIU Y C, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts[J]. Environmental Science & Technology, 2021, 55(8): 4268-4286. |
4 | LIU L Z, SUN J T, DING J D, et al. Highly active Mn3- x Fe x O4 spinel with defects for toluene mineralization: Insights into regulation of the oxygen vacancy and active metals[J]. Inorganic Chemistry, 2019, 58(19): 13241-13249. |
5 | HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. |
6 | JIN J, LI P, CHUN D H, et al. Defect dominated hierarchical Ti-metal-organic frameworks via a linker competitive coordination strategy for toluene removal[J]. Advanced Functional Materials, 2021, 31: 2102511. |
7 | LI S J, DANG X Q, YU X, et al. High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor[J]. Journal of Hazardous Materials, 2020, 400: 123259. |
8 | BELLUOMO I, BOSHIER P R, MYRIDAKIS A, et al. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath[J]. Nature Protocols, 2021, 16: 3419-3438. |
9 | DU X Y, LI C T, ZHANG J, et al. Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples[J]. Journal of Hazardous Materials, 2021, 408: 124830. |
10 | SHU Y J, JI J, XU Y, et al. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation[J]. Applied Catalysis B: Environmental, 2018, 220: 78-87. |
11 | LEE J E, OK Y S, TSANG D C W, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Science of The Total Environment, 2020, 719: 137405. |
12 | WENG X L, MENG Q J, LIU J J, et al. Catalytic oxidation of chlorinated organics over lanthanide perovskites: Effects of phosphoric acid etching and water vapor on chlorine desorption behavior[J]. Environmental Science & Technology, 2019, 53(2): 884-893. |
13 | 周远松, 高凤雨, 唐晓龙, 等. 金属氧化物催化CO还原NO的研究进展[J]. 化工进展, 2019, 38(11): 4941-4948. |
ZHOU Y S, GAO F Y, TANG X L, et al. Research progress on NO reduction by CO over metal oxide catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4941-4948. | |
14 | LUO M M, CHENG Y, PENG X Z, et al. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene[J]. Chemical Engineering Journal, 2019, 369: 758-765. |
15 | WANG H P, LU Y Y, HAN Y X, et al. Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu-O-Mn/γ-Al2O3 catalysts[J]. Applied Surface Science, 2017, 420: 260-266. |
16 | YANG Q L, WANG D, WANG C Z, et al. Promotion effect of Ga-Co spinel derived from layered double hydroxides for toluene oxidation[J]. ChemCatChem, 2018, 10: 4838-4843. |
17 | SUN H, YU X L, YANG X Q, et al. Au/Rod-like MnO2 catalyst via thermal decomposition of manganite precursor for the catalytic oxidation of toluene[J]. Catalysis Today, 2019, 332: 153-159. |
18 | GENTY E, SIFFERT S, COUSIN R. Investigation of reaction mechanism and kinetic modelling for the toluene total oxidation in presence of CoAlCe catalyst[J]. Catalysis Today, 2019, 333: 28-35. |
19 | LONG R, MAO K K, GONG M, et al. Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects[J]. Angewandte Chemie, 2014, 53(12): 3205-3209. |
20 | DONG C, QU Z P, QIN Y, et al. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: Involvement and replenishment of oxygen species using in situ designed-TP techniques[J]. ACS Catalysis, 2019, 9(8): 6698-6710. |
21 | WANG H L, LUO S T, ZHANG M S, et al. Roles of oxygen vacancy and O x - in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts[J]. Journal of Catalysis, 2018, 368: 365-378. |
22 | LI Z Q, REN F, CHEN Z C, et al. Improved NO x emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler[J]. Environmental Science & Technology, 2010, 44(10): 3926-3931. |
23 | WANG D, CHEN Q Z, ZHANG X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: A critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766. |
24 | SUN S R, LIU W B, GUAN W S, et al. Effects of air pollution control devices on volatile organic compounds reduction in coal-fired power plants[J]. Science of the Total Environment, 2021,782: 146828. |
25 | LIU J, WANG T, CHENG J, et al. Distribution of organic compounds in coal-fired power plant emissions[J]. Energy & Fuels, 2019, 33(6): 5430-5437. |
26 | PENG K, HOU Y Q, ZHANG Y Z, et al. Engineering oxygen vacancies in metal-doped MnO2 nanospheres for boosting the low-temperature toluene oxidation[J]. Fuel, 2022, 314: 123123. |
27 | LI K G, LI T, DAI Y H, et al. Highly active urchin-like MCo2O4 (M=Co, Cu, Ni or Zn) spinel for toluene catalytic combustion[J]. Fuel, 2022, 318: 123648. |
28 | ZHOU X Y, LAI X X, LIN T, et al. Preparation of a monolith MnO x -CeO2/La-Al2O3 catalyst and its properties for catalytic oxidation of toluene[J]. New Journal of Chemistry, 2018, 20(42): 16875-16885. |
29 | ZHANG Y Z, ZENG Z Q, LI Y F, et al. Effect of the A-site cation over spinel AMn2O4 (A=Cu2+, Ni2+, Zn2+) for toluene combustion: Enhancement of the synergy and the oxygen activation ability[J]. Fuel, 2021, 288: 119700. |
30 | DONG C, QU Z P, JIANG X, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181. |
31 | ZHANG W L, LI M Y, WANG X T, et al. Boosting catalytic toluene combustion over Mn doped Co3O4 spinel catalysts: Improved mobility of surface oxygen due to formation of Mn-O-Co bonds[J]. Applied Surface Science, 2022, 590: 153140. |
32 | SU Z A, YANG W H, WANG C Z, et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environmental Science & Technology, 2020, 54(19): 12684-12692. |
33 | WANG Y, WANG G, DENG W, et al. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chemical Engineering Journal, 2020, 395: 125172. |
34 | SHEN Y J, DENG J, IMPENG S, et al. Boosting toluene combustion by engineering Co-O strength in cobalt oxide catalysts[J]. Environmental Science & Technology, 2020, 54(16): 10342-10350. |
35 | WANG Y, WU J, WANG G, et al. Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation[J]. Applied Catalysis B: Environmental, 2021, 285: 119873. |
36 | LI Z, YAN Q H, JIANG Q, et al. Oxygen vacancy mediated CuyCo3- y Fe1O x mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect[J]. Applied Catalysis B: Environmental, 2020, 269: 118827. |
37 | ZHANG P F, LU H F, ZHOU Y, et al. Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nature Communications, 2015, 6(1): 1-10. |
38 | CHEN X, CHEN X, YU E Q, et al. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion[J]. Chemical Engineering Journal, 2018, 344: 469-479. |
39 | ZHANG X J, ZHAO J G, SONG Z X, et al. The catalytic oxidation performance of toluene over the Ce-Mn-O x catalysts: Effect of synthetic routes[J]. Journal of Colloid and Interface Science, 2020, 562: 170-181. |
40 | LI J R, ZHANG W P, LI C, et al. Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway[J]. Journal of Colloid and Interface Science, 2021, 591: 396-408. |
41 | ZENG Y Q, K-G HAW, WANG Z G, et al. Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation[J]. Journal of Hazardous Materials, 2021, 404: 124088. |
42 | ZHANG C H, WANG C, HUANG H, et al. Insights into the size and structural effects of zeolitic supports on gaseous toluene oxidation over MnO x /HZSM-5 catalysts[J]. Applied Surface Science, 2019, 486: 108-120. |
43 | LIU C F, HE L C, WANG X F, et al. Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst[J]. Molecular Catalysis, 2022, 524: 112297. |
44 | ZHANG L, HUANG S S, DENG W, et al. Dichloromethane catalytic combustion over Co3O4 catalysts supported on MFI type zeolites[J]. Microporous and Mesoporous Materials, 2021, 312: 110599. |
45 | ZHOU C X, ZHANG H L, ZHANG Z, et al. Improved reactivity for toluene oxidation on MnO x /CeO2-ZrO2 catalyst by the synthesis of cubic-tetragonal interfaces[J]. Applied Surface Science, 2021, 539: 148188. |
46 | CHAI G T, DU D, WANG C, et al. Spinel Co3O4 oxides-support synergistic effect on catalytic oxidation of toluene[J]. Applied Catalysis A: General, 2021, 614: 118044. |
47 | ZHANG Y, LU J C, ZHANG L M, et al. Investigation into the catalytic roles of oxygen vacancies during gaseous styrene degradation process via CeO2 catalysts with four different morphologies[J]. Applied Catalysis B: Environmental, 2022, 309: 121249. |
48 | MA Y, WANG L, MA J Z, et al. Investigation into the enhanced catalytic oxidation of o‑xylene over MOF-derived Co3O4 with different shapes: The role of surface twofold-coordinate lattice oxygen (O2f)[J]. ACS Catalysis, 2021, 11(11): 6614-6625. |
49 | WU S P, LIU H M, HUANG Z, et al. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation[J]. Applied Catalysis B: Environmental, 2022, 312: 121387. |
50 | LUO Y J, LIN D F, ZHENG Y B, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481. |
51 | FANG W, CHEN J H, ZHOU X Y, et al. Zeolitic imidazolate framework-67-derived CeO2@Co3O4 core-shell microspheres with enhanced catalytic activity toward toluene oxidation[J]. Industrial & Engineering Chemistry Research, 2020, 59(22): 10328-10337. |
52 | KAWI S, TE M. MCM-48 supported chromium catalyst for trichloroethylene oxidation[J]. Catalysis Today, 1998, 44(1/2/3/4): 101-109. |
53 | CHOYA A, DE RIVAS B, GONZÁLEZ-VELASCO J R, et al. Oxidation of lean methane over cobalt catalysts supported on ceria/alumina[J]. Applied Catalysis A: General, 2020, 591: 117381. |
54 | ZHANG W D, DESCORME C, VALVERDE J L, et al. Cu-Co mixed oxide catalysts for the total oxidation of toluene and propane[J]. Catalysis Today, 2022, 384/385/386: 238-245. |
55 | MENG L Q, ZHAO H B. Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis[J]. Applied Catalysis B: Environmental, 2020, 264: 118427. |
56 | LEISTNER K, OLSSON L. Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR[J]. Applied Catalysis B: Environmental, 2015, 165: 192-199. |
57 | ZHANG X D, BI F K, ZHU Z Q, et al. The promoting effect of H2O on rod-like MnCeO x derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393. |
58 | PAN H, CHEN Z H, MA M D, et al. Mutual inhibition mechanism of simultaneous catalytic removal of NO x and toluene on Mn-based catalysts[J]. Journal of Colloid and Interface Science, 2022, 607: 1189-1200. |
59 | LI Z, GAO Y S, WANG Q. The influencing mechanism of NH3 and NO x addition on the catalytic oxidation of toluene over Mn2Cu1Al1O x catalyst[J]. Journal of Cleaner Production, 2022, 348: 131152. |
60 | YE L M, LU P, PENG Y, et al. Impact of NO x and NH3 addition on toluene oxidation over MnO x -CeO2 catalyst[J]. Journal of Hazardous Materials, 2021, 416: 125939. |
61 | ZHAO L K, HUANG Y, ZHANG J F, et al. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range[J]. Chemical Engineering Journal, 2020, 397: 125419. |
62 | LI J H, XIAO G F, GUO Z Y, et al. ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas[J]. Chemical Engineering Journal, 2021, 419: 129675. |
63 | WANG Z, XIE K Y, ZHENG J, et al. Studies of sulfur poisoning process via ammonium sulfate on MnO2/γ-Al2O3 catalyst for catalytic combustion of toluene[J]. Applied Catalysis B: Environmental, 2021, 298: 120595. |
64 | XIAO G F, GUO Z Y, LI J H, et al. Insights into the effect of flue gas on synergistic elimination of toluene and NO x over V2O5-MoO3(WO3)/TiO2 catalysts[J]. Chemical Engineering Journal, 2022, 435: 134914. |
65 | LYU Y, XU J Y, CAO Q Q, et al. Highly efficient removal of toluene over Cu-V oxides modified γ-Al2O3 in the presence of SO2 [J]. Journal of Hazardous Materials, 2022, 436: 129041. |
66 | YU X H, WANG L Y, CHEN M Z, et al. Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous Mn x Ce1- x O δ /SiO2 catalysts[J]. Applied Catalysis B: Environmental, 2019, 254: 246-259. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[7] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[10] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[11] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[12] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |