化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6319-6337.DOI: 10.16085/j.issn.1000-6613.2022-0442
关静莹(), 张欢欢, 苏子恺, 史大昕(), 吴芹, 陈康成, 张耀远, 黎汉生()
收稿日期:
2022-03-21
修回日期:
2022-05-24
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
史大昕,黎汉生
作者简介:
关静莹(1998—),女,硕士研究生,研究方向为氨分解制氢。E-mail:guanjingying11@163.com。
基金资助:
GUAN Jingying(), ZHANG Huanhuan, SU Zikai, SHI Daxin(), WU Qin, CHEN Kangcheng, ZHANG Yaoyuan, LI Hansheng()
Received:
2022-03-21
Revised:
2022-05-24
Online:
2022-12-20
Published:
2022-12-29
Contact:
SHI Daxin, LI Hansheng
摘要:
氨分解制氢清洁高效,易于工业化使用,是一种极具前景的便携式制氢方法。镍作为氨分解非贵金属催化剂中性能最好、应用最广的催化剂,但仍存在低温活性低、易烧结等问题亟需改进。本文概括了氨分解反应的反应机理、动力学和热力学,综述了近年来国内外氨分解镍基催化剂的研究现状。研究者从镍金属活性中心调控出发进行研究,发现调节镍粒子尺寸、加入第二金属(Fe、Co、Mo等)、载体(Al2O3、SiO2、分子筛等)、助剂(碱土金属、稀土金属等)以及设计核壳结构进行调控,可提高镍金属的分散性和抗烧结能力。本文在以上基础上提出了镍基催化剂的改进措施和未来发展方向,以期为进一步设计出低温高活性镍基催化剂提供依据。
中图分类号:
关静莹, 张欢欢, 苏子恺, 史大昕, 吴芹, 陈康成, 张耀远, 黎汉生. 氨分解制氢镍基催化剂研究进展[J]. 化工进展, 2022, 41(12): 6319-6337.
GUAN Jingying, ZHANG Huanhuan, SU Zikai, SHI Daxin, WU Qin, CHEN Kangcheng, ZHANG Yaoyuan, LI Hansheng. Recent progress in nickel-based catalysts for ammonia decomposition to hydrogen[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6319-6337.
催化剂 | 制备方法 | 镍质量分数/% | 反应温度/℃ | 空速/mL·g-1·h-1 | 氨转化率/% | TOF/s-1 | 氢气生成速率/mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Ni1Co9/Ce0.6Zr0.3Y0.1O2 | 湿浸渍(WI) | 10 | 550 | 6000 | 100 | 0.68① | 6.13 | [ |
Ni-Co/α-Al2O3 | 浸渍(IM) | 10 | 500 | W/F=2.45kg·s/L | 73 | — | — | [ |
Ni5Co5/SiO2 | IM | 10 | 550 | 30000 | 76.8 | — | 25.71 | [ |
Ni5Co5/SiO2-K | IM | 10 | 550 | 30000 | 78.1 | — | — | [ |
Fe-Ni/γ-Al2O3 | WI | 10 | 650 | 28500 | — | — | 31.7mL·min/g | [ |
Ni-Ir/γ-Al2O3 | WI | 10.7 | 400 | 9500 | 43.55 | — | — | [ |
Ni-Pt/Al2O3 | — | — | 600 | W/F=3.4g·h/mol | 78.1 | — | — | [ |
Ni-Ru/CeO2 | WI | 12 | 450 | 13800 | 90 | — | — | [ |
10Ni2Ru/CeO2 | WI | 12 | 450 | 15000 | 84.5 | 0.88 | — | [ |
5Ni1Ru/CeO2 | WI | 6 | 450 | 15000 | 86.1 | 1.01 | — | [ |
2.5Ni0.5Ru/CeO2 | WI | 3 | 450 | 15000 | 88.7 | 2 | — | [ |
2Ni0.4Ru/CeO2 | WI | 2.4 | 450 | 15000 | 81.2 | 1.57 | — | [ |
1.5Ni0.5Ru/CeO2 | WI | 2 | 450 | 15000 | 86.3 | 2.44 | — | [ |
2.5Ni0.3Ru/CeO2 | WI | 2.8 | 450 | 15000 | 73.4 | 1.11 | — | [ |
表1 双金属镍基催化剂的氨分解催化活性
催化剂 | 制备方法 | 镍质量分数/% | 反应温度/℃ | 空速/mL·g-1·h-1 | 氨转化率/% | TOF/s-1 | 氢气生成速率/mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Ni1Co9/Ce0.6Zr0.3Y0.1O2 | 湿浸渍(WI) | 10 | 550 | 6000 | 100 | 0.68① | 6.13 | [ |
Ni-Co/α-Al2O3 | 浸渍(IM) | 10 | 500 | W/F=2.45kg·s/L | 73 | — | — | [ |
Ni5Co5/SiO2 | IM | 10 | 550 | 30000 | 76.8 | — | 25.71 | [ |
Ni5Co5/SiO2-K | IM | 10 | 550 | 30000 | 78.1 | — | — | [ |
Fe-Ni/γ-Al2O3 | WI | 10 | 650 | 28500 | — | — | 31.7mL·min/g | [ |
Ni-Ir/γ-Al2O3 | WI | 10.7 | 400 | 9500 | 43.55 | — | — | [ |
Ni-Pt/Al2O3 | — | — | 600 | W/F=3.4g·h/mol | 78.1 | — | — | [ |
Ni-Ru/CeO2 | WI | 12 | 450 | 13800 | 90 | — | — | [ |
10Ni2Ru/CeO2 | WI | 12 | 450 | 15000 | 84.5 | 0.88 | — | [ |
5Ni1Ru/CeO2 | WI | 6 | 450 | 15000 | 86.1 | 1.01 | — | [ |
2.5Ni0.5Ru/CeO2 | WI | 3 | 450 | 15000 | 88.7 | 2 | — | [ |
2Ni0.4Ru/CeO2 | WI | 2.4 | 450 | 15000 | 81.2 | 1.57 | — | [ |
1.5Ni0.5Ru/CeO2 | WI | 2 | 450 | 15000 | 86.3 | 2.44 | — | [ |
2.5Ni0.3Ru/CeO2 | WI | 2.8 | 450 | 15000 | 73.4 | 1.11 | — | [ |
催化剂 | 制备方法 | 镍质量分数/% | 反应温度/℃ | 空速/mL·g-1·h-1 | 氨转化率/% | 氢气生成速率/mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Ni/SBA-15 | 沉积-沉淀(DP) | 23.4 | 550 | 30000 | 89.0 | 29.8 | [ |
Ni/SBA-15 | WI | 10 | 550 | 30000 | 50.8 | 17.0 | [ |
Ni/SiO2 | WI | 10 | 600 | 30000h-1 | 78.0 | — | [ |
Ni/ATP | 均相沉淀(HP) | 15.7 | 650 | 30000 | 77.2 | 25.8 | [ |
Ni/Al2O3 | 共沉淀(CP) | 49.9 | 500 | 30000 | 38.2 | — | [ |
Ni/Al2O3 | CP | 90 | 600 | 36000 | 93.0 | — | [ |
Ni/Mg-Al-O | — | 20 | 550 | 6000 | 90.3 | — | [ |
Ni/Sr-Al-O | — | 20 | 550 | 6000 | 78.8 | — | [ |
Ni/Ca-Al-O | — | 20 | 550 | 6000 | 62.6 | — | [ |
Ni/Ba-Al-O | — | 20 | 550 | 6000 | 39.8 | — | [ |
Ni/Ce0.8Zr0.2O2 | IM | 13.2 | 550 | 15mL/min | 95.7 | — | [ |
Ni/Al2O3 | WI | 10 | 550 | — | 71.0 | — | [ |
Ni/ZrO2 | WI | 10 | 550 | — | 10.0 | — | [ |
Ni/SiO2 | WI | 10 | 550 | — | 57.0 | — | [ |
Ni/MgO | WI | 10 | 550 | — | 46.0 | — | [ |
Ni/CeO2 | WI | 10 | 550 | — | 45.0 | — | [ |
Ni/TiO2 | WI | 10 | 550 | — | 36.0 | — | [ |
Ni/La2O3 | WI | 10 | 550 | — | 62.0 | — | [ |
Ni/La2O3 | WI | 26.5 | 550 | 6000 | 75.0 | 5.0 | [ |
Ni/La2O3 | 柠檬酸络合(CAC) | 26.5 | 550 | 6000 | 77.0 | 5.1 | [ |
Ni/La2O3 | NH3-CP | 26.5 | 550 | 6000 | 64.0 | 4.4 | [ |
Ni/La2O3 | NaOH-CP | 26.5 | 550 | 6000 | 68.0 | 4.6 | [ |
Ni/La2O3 | 热解(PR) | 26.5 | 550 | 6000 | 57.0 | 4.0 | [ |
Ni/MgO-La2O3 | — | 5 | 550 | 30000 | 54.0 | — | [ |
Ni/ZSM-5 | WI | 5 | 650 | 30000 | 50.1 | 16.8 | [ |
Ni/ZSM-5 | DP | 5 | 650 | 30000 | 81.3 | 27.2 | [ |
Ni/ZSM-5 | 固态离子(SSIE) | 5 | 650 | 30000 | 92.9 | 31.1 | [ |
Ni/ZSM-5 | 改性固态离子交换(MSSIE) | 5 | 650 | 30000 | 97.6 | 32.7 | [ |
Ni0.6(Mg0.29Al0.57O n ) | CP | 40.1 | 600 | 30000 | 99.3 | 33.3 | [ |
Ni x /LDHs | IM | 23.6 | 550 | 10000 | 48.0 | — | [ |
Ni x /LDHs | 镍诱导(ST) | 23.6 | 550 | 10000 | 84.0 | — | [ |
Ni-MgAl(6∶1) | CP | 15 | 550 | 30000 | 48.0 | — | [ |
Ni-KNbO3 | IM | 40 | 550 | — | 35.0 | — | [ |
Ni-LaAlO3 | IM | 40 | 550 | — | 74.0 | — | [ |
Ni-SmAlO3 | IM | 40 | 550 | — | 82.0 | — | [ |
Ni-GdAlO3 | IM | 40 | 550 | — | 82.0 | — | [ |
Ni-CaMnO3 | IM | 40 | 550 | — | 54.0 | — | [ |
Ni-SrMnO3 | IM | 40 | 550 | — | 48.0 | — | [ |
Ni-BaMnO3 | IM | 40 | 550 | — | 44.0 | — | [ |
Ni-CaTiO3 | IM | 40 | 550 | — | 37.0 | — | [ |
Ni-SrTiO3 | IM | 40 | 550 | — | 79.0 | — | [ |
Ni-BaTiO3 | IM | 40 | 550 | — | 74.0 | — | [ |
Ni-CaZrO3 | IM | 40 | 550 | — | 52.0 | — | [ |
Ni-SrZrO3 | IM | 40 | 550 | — | 91.0 | — | [ |
Ni-BaZrO3 | IM | 40 | 550 | — | 94.0 | — | [ |
Ni/海泡石 | WI | 5.2 | 600 | 15500 | 63.1 | 10.0 | [ |
Ni/Y2O3 | IM | 10 | 550 | — | 86.0 | — | [ |
Ni/La2O3 | IM | 10 | 550 | — | 61.0 | — | [ |
Ni/CeO2 | IM | 10 | 550 | — | 23.0 | — | [ |
Ni/Sm2O3 | IM | 10 | 550 | — | 77.0 | — | [ |
Ni/Gd2O3 | IM | 10 | 550 | — | 76.0 | — | [ |
Ni/Al2O3 | IM | 10 | 550 | — | 68.0 | — | [ |
Ni/Y2O3 | CP | 30 | 550 | — | 98.3 | — | [ |
Ni/CeO2 | CP | 30 | 550 | — | 92.9 | — | [ |
Ni/MgO | CP | 30 | 550 | — | 87.2 | — | [ |
Ni/La2O3 | CP | 30 | 550 | — | 84.3 | — | [ |
Ni/Al2O3 | CP | 30 | 550 | — | 84.0 | — | [ |
Ni/ZrO2 | CP | 30 | 550 | — | 71.8 | — | [ |
Ni/云母 | WI | 15 | 650 | 30000 | 97.2 | 32.5 | [ |
Ni/MRM | HP | 15 | 700 | 50mL/min | 97.9 | 32.8 | [ |
Ni/MRM | IM | 12 | 700 | 50mL/min | 95.5 | 32.0 | [ |
Ni-CNFs | — | 2 | 650 | — | 68.0 | 23.0 | [ |
Ni/MWCNTs | — | 5 | 500 | 6000h-1 | 59.0 | — | [ |
Ni/AC | — | 5 | 500 | 6000h-1 | 23.0 | — | [ |
Ni-rGO | — | 10 | 700 | 50mL/min | 81.9 | 27.4 | [ |
Ni@Al2O3 | — | — | 600 | 24000 | 93.9 | — | [ |
表2 不同载体负载镍基催化剂的氨分解催化活性
催化剂 | 制备方法 | 镍质量分数/% | 反应温度/℃ | 空速/mL·g-1·h-1 | 氨转化率/% | 氢气生成速率/mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Ni/SBA-15 | 沉积-沉淀(DP) | 23.4 | 550 | 30000 | 89.0 | 29.8 | [ |
Ni/SBA-15 | WI | 10 | 550 | 30000 | 50.8 | 17.0 | [ |
Ni/SiO2 | WI | 10 | 600 | 30000h-1 | 78.0 | — | [ |
Ni/ATP | 均相沉淀(HP) | 15.7 | 650 | 30000 | 77.2 | 25.8 | [ |
Ni/Al2O3 | 共沉淀(CP) | 49.9 | 500 | 30000 | 38.2 | — | [ |
Ni/Al2O3 | CP | 90 | 600 | 36000 | 93.0 | — | [ |
Ni/Mg-Al-O | — | 20 | 550 | 6000 | 90.3 | — | [ |
Ni/Sr-Al-O | — | 20 | 550 | 6000 | 78.8 | — | [ |
Ni/Ca-Al-O | — | 20 | 550 | 6000 | 62.6 | — | [ |
Ni/Ba-Al-O | — | 20 | 550 | 6000 | 39.8 | — | [ |
Ni/Ce0.8Zr0.2O2 | IM | 13.2 | 550 | 15mL/min | 95.7 | — | [ |
Ni/Al2O3 | WI | 10 | 550 | — | 71.0 | — | [ |
Ni/ZrO2 | WI | 10 | 550 | — | 10.0 | — | [ |
Ni/SiO2 | WI | 10 | 550 | — | 57.0 | — | [ |
Ni/MgO | WI | 10 | 550 | — | 46.0 | — | [ |
Ni/CeO2 | WI | 10 | 550 | — | 45.0 | — | [ |
Ni/TiO2 | WI | 10 | 550 | — | 36.0 | — | [ |
Ni/La2O3 | WI | 10 | 550 | — | 62.0 | — | [ |
Ni/La2O3 | WI | 26.5 | 550 | 6000 | 75.0 | 5.0 | [ |
Ni/La2O3 | 柠檬酸络合(CAC) | 26.5 | 550 | 6000 | 77.0 | 5.1 | [ |
Ni/La2O3 | NH3-CP | 26.5 | 550 | 6000 | 64.0 | 4.4 | [ |
Ni/La2O3 | NaOH-CP | 26.5 | 550 | 6000 | 68.0 | 4.6 | [ |
Ni/La2O3 | 热解(PR) | 26.5 | 550 | 6000 | 57.0 | 4.0 | [ |
Ni/MgO-La2O3 | — | 5 | 550 | 30000 | 54.0 | — | [ |
Ni/ZSM-5 | WI | 5 | 650 | 30000 | 50.1 | 16.8 | [ |
Ni/ZSM-5 | DP | 5 | 650 | 30000 | 81.3 | 27.2 | [ |
Ni/ZSM-5 | 固态离子(SSIE) | 5 | 650 | 30000 | 92.9 | 31.1 | [ |
Ni/ZSM-5 | 改性固态离子交换(MSSIE) | 5 | 650 | 30000 | 97.6 | 32.7 | [ |
Ni0.6(Mg0.29Al0.57O n ) | CP | 40.1 | 600 | 30000 | 99.3 | 33.3 | [ |
Ni x /LDHs | IM | 23.6 | 550 | 10000 | 48.0 | — | [ |
Ni x /LDHs | 镍诱导(ST) | 23.6 | 550 | 10000 | 84.0 | — | [ |
Ni-MgAl(6∶1) | CP | 15 | 550 | 30000 | 48.0 | — | [ |
Ni-KNbO3 | IM | 40 | 550 | — | 35.0 | — | [ |
Ni-LaAlO3 | IM | 40 | 550 | — | 74.0 | — | [ |
Ni-SmAlO3 | IM | 40 | 550 | — | 82.0 | — | [ |
Ni-GdAlO3 | IM | 40 | 550 | — | 82.0 | — | [ |
Ni-CaMnO3 | IM | 40 | 550 | — | 54.0 | — | [ |
Ni-SrMnO3 | IM | 40 | 550 | — | 48.0 | — | [ |
Ni-BaMnO3 | IM | 40 | 550 | — | 44.0 | — | [ |
Ni-CaTiO3 | IM | 40 | 550 | — | 37.0 | — | [ |
Ni-SrTiO3 | IM | 40 | 550 | — | 79.0 | — | [ |
Ni-BaTiO3 | IM | 40 | 550 | — | 74.0 | — | [ |
Ni-CaZrO3 | IM | 40 | 550 | — | 52.0 | — | [ |
Ni-SrZrO3 | IM | 40 | 550 | — | 91.0 | — | [ |
Ni-BaZrO3 | IM | 40 | 550 | — | 94.0 | — | [ |
Ni/海泡石 | WI | 5.2 | 600 | 15500 | 63.1 | 10.0 | [ |
Ni/Y2O3 | IM | 10 | 550 | — | 86.0 | — | [ |
Ni/La2O3 | IM | 10 | 550 | — | 61.0 | — | [ |
Ni/CeO2 | IM | 10 | 550 | — | 23.0 | — | [ |
Ni/Sm2O3 | IM | 10 | 550 | — | 77.0 | — | [ |
Ni/Gd2O3 | IM | 10 | 550 | — | 76.0 | — | [ |
Ni/Al2O3 | IM | 10 | 550 | — | 68.0 | — | [ |
Ni/Y2O3 | CP | 30 | 550 | — | 98.3 | — | [ |
Ni/CeO2 | CP | 30 | 550 | — | 92.9 | — | [ |
Ni/MgO | CP | 30 | 550 | — | 87.2 | — | [ |
Ni/La2O3 | CP | 30 | 550 | — | 84.3 | — | [ |
Ni/Al2O3 | CP | 30 | 550 | — | 84.0 | — | [ |
Ni/ZrO2 | CP | 30 | 550 | — | 71.8 | — | [ |
Ni/云母 | WI | 15 | 650 | 30000 | 97.2 | 32.5 | [ |
Ni/MRM | HP | 15 | 700 | 50mL/min | 97.9 | 32.8 | [ |
Ni/MRM | IM | 12 | 700 | 50mL/min | 95.5 | 32.0 | [ |
Ni-CNFs | — | 2 | 650 | — | 68.0 | 23.0 | [ |
Ni/MWCNTs | — | 5 | 500 | 6000h-1 | 59.0 | — | [ |
Ni/AC | — | 5 | 500 | 6000h-1 | 23.0 | — | [ |
Ni-rGO | — | 10 | 700 | 50mL/min | 81.9 | 27.4 | [ |
Ni@Al2O3 | — | — | 600 | 24000 | 93.9 | — | [ |
催化剂 | 制备方法 | 镍分散度 /% | 镍质量分数 /% | 反应温度 /℃ | 空速 /mL·g-1·h-1 | 氨转化率 /% | TOF /s-1 | 氢气生成速率 /mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Ce-Ni/SBA-15 | DP | 29.5 | — | 550 | — | 88.0 | — | — | [ |
La-Ni/SBA-15 | DP | 24.3 | — | 550 | — | 85.0 | — | — | [ |
Ni/La–Al2O3 | CP | 25.5 | 37.9 | 500 | — | 63.9 | 21.4 | — | [ |
Ni/Ce-掺杂Al2O3 | CP | 3.15 | — | 550 | 30000 | 87.9 | — | — | [ |
Ni-Ce/Al2O3 | CP | 21 | 43.4 | 500 | 30000 | 71.9 | 24.1 | — | [ |
Ni/Ce-掺杂Al2O3 | — | 4 | — | 550 | — | 89.9 | — | — | [ |
Ni/Zr-掺杂Al2O3 | — | 3.3 | — | 550 | — | 87.0 | — | — | [ |
Ni/Sr-掺杂Al2O3 | — | 3.4 | — | 550 | — | 84.4 | — | — | [ |
Ni/Y-掺杂Al2O3 | — | 2 | — | 550 | — | 79.2 | — | — | [ |
Y-Ni/Al2O3 | WI | 3.39 | 9 | 450 | 6000 | 18.8 | 0.38 | 1.3 | [ |
La-Ni/Al2O3 | WI | 3.57 | 9 | 450 | 6000 | 20.2 | 0.38 | 1.4 | [ |
Ce-Ni/Al2O3 | WI | 3.43 | 9 | 450 | 6000 | 15.4 | 0.29 | 1.0 | [ |
Pr-Ni/Al2O3 | WI | 2.98 | 9 | 450 | 6000 | 19.7 | 0.43 | 1.3 | [ |
Nd-Ni/Al2O3 | WI | 3.44 | 9 | 450 | 6000 | 19.7 | 0.37 | 1.3 | [ |
Sm-Ni/Al2O3 | WI | 3.06 | 9 | 450 | 6000 | 18.2 | 0.38 | 1.2 | [ |
Eu-Ni/Al2O3 | WI | 3.48 | 9 | 450 | 6000 | 15.9 | 0.31 | 1.1 | [ |
Gd-Ni/Al2O3 | WI | 3.45 | 9 | 450 | 6000 | 15.8 | 0.31 | 1.1 | [ |
Ni/Zr-doped Al2O3 | WI | 3.3 | 20 | 550 | 7500 | 79.8 | — | 5.5 | [ |
Ni/Al-Ce0.8Zr0.2 | CP | — | 10 | 550 | 9000h-1 | 92.0 | 0.48 | — | [ |
MgO–Ni/Y2O3 | — | — | 40 | 500 | — | 60.0 | — | — | [ |
CaO–Ni/Y2O3 | — | — | 40 | 500 | — | 42.0 | — | — | [ |
SrO–Ni/Y2O3 | — | — | 40 | 500 | — | 80.0 | — | — | [ |
BaO–Ni/Y2O3 | — | — | 40 | 500 | — | 76.0 | — | — | [ |
表3 改性镍基催化剂氨分解催化活性
催化剂 | 制备方法 | 镍分散度 /% | 镍质量分数 /% | 反应温度 /℃ | 空速 /mL·g-1·h-1 | 氨转化率 /% | TOF /s-1 | 氢气生成速率 /mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Ce-Ni/SBA-15 | DP | 29.5 | — | 550 | — | 88.0 | — | — | [ |
La-Ni/SBA-15 | DP | 24.3 | — | 550 | — | 85.0 | — | — | [ |
Ni/La–Al2O3 | CP | 25.5 | 37.9 | 500 | — | 63.9 | 21.4 | — | [ |
Ni/Ce-掺杂Al2O3 | CP | 3.15 | — | 550 | 30000 | 87.9 | — | — | [ |
Ni-Ce/Al2O3 | CP | 21 | 43.4 | 500 | 30000 | 71.9 | 24.1 | — | [ |
Ni/Ce-掺杂Al2O3 | — | 4 | — | 550 | — | 89.9 | — | — | [ |
Ni/Zr-掺杂Al2O3 | — | 3.3 | — | 550 | — | 87.0 | — | — | [ |
Ni/Sr-掺杂Al2O3 | — | 3.4 | — | 550 | — | 84.4 | — | — | [ |
Ni/Y-掺杂Al2O3 | — | 2 | — | 550 | — | 79.2 | — | — | [ |
Y-Ni/Al2O3 | WI | 3.39 | 9 | 450 | 6000 | 18.8 | 0.38 | 1.3 | [ |
La-Ni/Al2O3 | WI | 3.57 | 9 | 450 | 6000 | 20.2 | 0.38 | 1.4 | [ |
Ce-Ni/Al2O3 | WI | 3.43 | 9 | 450 | 6000 | 15.4 | 0.29 | 1.0 | [ |
Pr-Ni/Al2O3 | WI | 2.98 | 9 | 450 | 6000 | 19.7 | 0.43 | 1.3 | [ |
Nd-Ni/Al2O3 | WI | 3.44 | 9 | 450 | 6000 | 19.7 | 0.37 | 1.3 | [ |
Sm-Ni/Al2O3 | WI | 3.06 | 9 | 450 | 6000 | 18.2 | 0.38 | 1.2 | [ |
Eu-Ni/Al2O3 | WI | 3.48 | 9 | 450 | 6000 | 15.9 | 0.31 | 1.1 | [ |
Gd-Ni/Al2O3 | WI | 3.45 | 9 | 450 | 6000 | 15.8 | 0.31 | 1.1 | [ |
Ni/Zr-doped Al2O3 | WI | 3.3 | 20 | 550 | 7500 | 79.8 | — | 5.5 | [ |
Ni/Al-Ce0.8Zr0.2 | CP | — | 10 | 550 | 9000h-1 | 92.0 | 0.48 | — | [ |
MgO–Ni/Y2O3 | — | — | 40 | 500 | — | 60.0 | — | — | [ |
CaO–Ni/Y2O3 | — | — | 40 | 500 | — | 42.0 | — | — | [ |
SrO–Ni/Y2O3 | — | — | 40 | 500 | — | 80.0 | — | — | [ |
BaO–Ni/Y2O3 | — | — | 40 | 500 | — | 76.0 | — | — | [ |
催化剂 | 镍质量分数/% | 反应温度/℃ | 空速/mL·g-1·h-1 | 氨转化率/% | TOF/s-1 | 氢气生成速率/mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Ni/ATP@SiO2 | 8.7 | 650 | 30000 | 73.4 | — | 24.6 | [ |
Ce-Ni@SiO2 | — | 600 | 50mL/min | 86.9 | — | 29.1 | [ |
Ni@SiO2 | — | 600 | 30000 | 78.9 | 96.9mmol/(h·mol) | 26.4 | [ |
Fe@SiO2 | Si/Fe=0.2 | 600 | 30000 | 81.8 | — | 27.9 | [ |
Ru@SiO2 | Si/Ru=0.2 | 600 | 30000 | 99.8 | — | 33.5 | [ |
Co@SiO2 | Si/Co=0.2 | 600 | 30000 | 52.3 | — | — | [ |
Ni@SiO2 | Si/Ni=0.2 | 600 | 30000 | 81.7 | — | 27.6 | [ |
Ni@MgO | — | 600 | 30000 | 69.8 | — | — | [ |
Ni@Al2O3 | — | 600 | 30000 | 60.4 | — | — | [ |
Ni@SiO2 | Si/Ni=0.2 | 600 | 30000 | 89.5 | 15.3 | 27.6 | [ |
Ni@SiO2 | Si/Ni=0.4 | 600 | 30000 | 78.5 | — | 25.6 | [ |
La-Ni@SiO2 | — | 600 | 30000 | 36.6 | — | 32.2 | [ |
表4 核壳型镍基催化剂氨分解催化活性
催化剂 | 镍质量分数/% | 反应温度/℃ | 空速/mL·g-1·h-1 | 氨转化率/% | TOF/s-1 | 氢气生成速率/mmol·min-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Ni/ATP@SiO2 | 8.7 | 650 | 30000 | 73.4 | — | 24.6 | [ |
Ce-Ni@SiO2 | — | 600 | 50mL/min | 86.9 | — | 29.1 | [ |
Ni@SiO2 | — | 600 | 30000 | 78.9 | 96.9mmol/(h·mol) | 26.4 | [ |
Fe@SiO2 | Si/Fe=0.2 | 600 | 30000 | 81.8 | — | 27.9 | [ |
Ru@SiO2 | Si/Ru=0.2 | 600 | 30000 | 99.8 | — | 33.5 | [ |
Co@SiO2 | Si/Co=0.2 | 600 | 30000 | 52.3 | — | — | [ |
Ni@SiO2 | Si/Ni=0.2 | 600 | 30000 | 81.7 | — | 27.6 | [ |
Ni@MgO | — | 600 | 30000 | 69.8 | — | — | [ |
Ni@Al2O3 | — | 600 | 30000 | 60.4 | — | — | [ |
Ni@SiO2 | Si/Ni=0.2 | 600 | 30000 | 89.5 | 15.3 | 27.6 | [ |
Ni@SiO2 | Si/Ni=0.4 | 600 | 30000 | 78.5 | — | 25.6 | [ |
La-Ni@SiO2 | — | 600 | 30000 | 36.6 | — | 32.2 | [ |
69 | HENPRASERTTAE S, CHAROJROCHKUL S, LAWTRAKUL L, et al. Ni-based catalysts for hydrogen production from ammonia decomposition: effect of dopants and urine application[J]. ChemistrySelect, 2018, 3(42): 11842-11850. |
70 | ATSUMI R, NODA R, TAKAGI H, et al. Effects of steam on Ni/Al2O3 catalysts for ammonia decomposition[J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17849-17853. |
71 | LI Xiukai, JI Weijie, ZHAO Jing, et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. Journal of Catalysis, 2005, 236(2): 181-189. |
72 | MUROYAMA H, MATSUI T, EGUCHI K. Production and utilization of hydrogen carriers by using supported nickel catalysts[J]. Journal of the Japan Petroleum Institute, 2021, 64(3): 123-131. |
73 | SIMA Dewen, WU Haojin, TIAN Koukou, et al. Enhanced low temperature catalytic activity of Ni/Al-Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9342-9352. |
74 | ZHU Zengzan, LU Guanzhong, ZHANG Zhigang, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method[J]. ACS Catalysis, 2013, 3(6): 1154-1164. |
75 | WAN Zhijian, TAO Youkun, YOU Hengzhi, et al. Na-ZSM-5 zeolite nanocrystals supported nickel nanoparticles for efficient hydrogen production from ammonia decomposition[J]. ChemCatChem, 2021,13(13): 3027-3036. |
76 | WAN Zhijian, TAO Youkun, YOU Hengzhi, et al. Facile synthesis of a sintering-resistant zeolite confined Ni catalyst for efficient CO x -free hydrogen generation from ammonia decomposition[J]. Sustainable Energy & Fuels, 2021, 5(12): 3182-3190. |
77 | INOKAWA H, ICHIKAWA T, MIYAOKA H. Catalysis of nickel nanoparticles with high thermal stability for ammonia decomposition[J]. Applied Catalysis A: General, 2015, 491: 184-188. |
78 | LUO Dan, ZHANG Xuqiang. The effect of oxygen-containing functional groups on the H2 adsorption of graphene-based nanomaterials: experiment and theory[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5668-5679. |
79 | MIAO Meng, SHA Maolin, MENG Qiangqiang. The rule of N in N-doped graphene supported Pd catalyst[J]. Chemical Physics Letters, 2021, 763: 138155-138159. |
80 | MA Qingmin, XIE Zun, WANG Jing, et al. Structures, stabilities and magnetic properties of small Co clusters[J]. Physics Letters A, 2006, 358(4): 289-296. |
81 | MIAO Meng, SHI Hui, WANG Qi, al et, et al. The Ti4 cluster activates water dissociation on defective graphene[J]. Physical Chemistry Chemical Physics, 2014, 16(12): 5634-5639. |
1 | ACAR C, DINCER I. Review and evaluation of hydrogen production options for better environment[J]. Journal of Cleaner Production, 2019, 218: 835-849. |
2 | 苏玉蕾, 王少波, 宋刚祥, 等. 氨分解制氢催化剂研究进展[J]. 舰船科学技术, 2010, 32(4): 138-143. |
SU Yulei, WANG Shaobo, SONG Gangxiang, et al. Development in catalysts for hydrogen production by ammonia decomposition[J]. Ship Science and Technology, 2010, 32(4): 138-143. | |
3 | OKURA K, OKANISHI T, MUROYAMA H, et al. Ammonia decomposition over nickel catalysts supported on rare-earth oxides for the on-site generation of hydrogen[J]. ChemCatChem, 2016, 8(18): 2988-2995. |
4 | LIU Jun, ZHENG Shuiying, ZHANG Zhixin, et al. Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9241-9251. |
5 | WIJAYANTA A T, ODA T, PURNOMO C W, et al. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15026-15044. |
6 | KOJIMA Y. Hydrogen storage materials for hydrogen and energy carriers[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18179-18192. |
7 | ATASHROUZ S, RAHMANI M. Predicting hydrogen storage capacity of metal-organic frameworks using group method of data handling[J]. Neural Computing and Applications, 2020, 32(18): 14851-14864. |
8 | LANG Chengguang, JIA Yi, YAO Xiangdong. Recent advances in liquid-phase chemical hydrogen storage[J]. Energy Storage Materials, 2020, 26: 290-312. |
9 | 刘红梅, 徐向亚, 张蓝溪, 等. 储氢材料的研究进展[J]. 石油化工, 2021, 50(10): 1101-1107. |
LIU Hongmei, XU Xiangya, ZHANG Lanxi, et al. Research progress of hydrogen storage materials[J]. Petrochemical Technology, 2021, 50(10): 1101-1107. | |
10 | 王中华, 郑淞生, 姚育栋, 等. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021. |
WANG Zhonghua, ZHENG Songsheng, YAO Yudong, et al. Research progress on electrocatalytic decomposition of ammonia for hydrogen production[J]. CIESC Journal, 2022, 73(3): 1008-1021. | |
11 | 蒋红华, 王亚运, 王帅, 等. 氨分解制氢镍基催化剂的制备和应用[J]. 化工生产与技术, 2020, 26(1): 5-7. |
JIANG Honghua, WANG Yayun, WANG Shuai, et al. Preparation and application of nickel-based catalyst for ammonia decomposition to hydrogen[J]. Chemical Production and Technology, 2020, 26(1): 5-7. | |
12 | 邱书伟, 程群淑, 任铁真. 纳米氧化镍的制备及其氨分解制氢性能[J]. 石油化工, 2016, 45(10): 1180-1185. |
QIU Shuwei, CHENG Qunshu, REN Tiezhen. Preparation and characterization of nano NiO catalysts for ammonia decomposition to hydrogen[J]. Petrochemical Technology, 2016, 45(10): 1180-1185. | |
13 | GU Yingqiu, JIN Zhao, ZHANG Hu, et al. Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for CO x -free hydrogen production from ammonia[J]. Journal of Materials Chemistry A, 2015, 3(33): 17172-17180. |
14 | 范清帅, 唐浩东, 韩文锋, 等. 氨分解制氢催化剂研究进展[J]. 工业催化, 2016, 24(8): 20-28. |
FAN Qingshuai, TANG Haodong, HAN Wenfeng, et al. Advances in the catalysts for hydrogen production from ammonia decomposition[J]. Industrial Catalysis, 2016, 24(8): 20-28. | |
15 | HUANG Chuanqing, YU Yingzhi, TANG Xiaoyue, et al. Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: influence of support morphologies[J]. Applied Surface Science, 2020, 532: 147335-147343. |
16 | LE Thien An, KIM Youngmin, KIM Hyun Woo, et al. Ru-supported lanthania-ceria composite as an efficient catalyst for CO x -free H2 production from ammonia decomposition[J]. Applied Catalysis B: Environmental, 2021, 285: 119831-119841. |
17 | PINZÓN M, ROMERO A, DE LUCAS CONSUEGRA A, et al. Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 326-335. |
18 | LUCENTINI I, GARCÍA COLLI G, LUZI C D, et al. Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: effect of metal loading and kinetic analysis[J]. Applied Catalysis B: Environmental, 2021, 286: 119896. |
19 | 邱书伟, 任铁真, 李珺. 氨分解制氢催化剂改性研究进展[J]. 化工进展, 2018, 37(3):1001-1007. |
QIU Shuwei, REN Tiezhen, LI Jun. The latest advances in the modified catalysts for hydrogen production from ammonia decomposition[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1001-1007. | |
20 | 常秋连, 李培霖, 陈松清, 等. 金属元素改性的超高温氨分解催化剂Ni/Mg-Al的结构及性能[J]. 石油炼制与化工, 2020, 51(2): 25-30. |
Chang Qiulian, LI Peilin, Chen Songqing, et al. Structure and properties of Ni/Mg-Al catalyst modified by different metal elements[J]. Petroleum Processing and Petrochemicals, 2020, 51(2): 25-30. | |
21 | OJELADE O A, ZAMAN S F. Ammonia decomposition for hydrogen production: a thermodynamic study[J]. Chemical Papers, 2021, 75(1): 57-65. |
22 | YIN Shuangfeng, ZHANG Qinhui, XU Boqing, et al. Investigation on the catalysis of CO x -free hydrogen generation from ammonia[J]. Journal of Catalysis, 2004, 224(2): 384-396. |
23 | DUAN Xuezhi, QIAN Gang, FAN Chen, et al. First-principles calculations of ammonia decomposition on Ni(110) surface[J]. Surface Science, 2012, 606(3/4): 549-553. |
24 | TSAI W, WEINBERG W H. Steady-state decomposition of ammonia on the ruthenium(001) surface[J]. The Journal of Physical Chemistry, 1987, 91(20): 5302-5307. |
25 | TAKAHASHI A, FUJITANI T. Kinetic analysis of decomposition of ammonia over nickel and ruthenium catalysts[J]. Journal of Chemical Engineering of Japan, 2016, 49(1): 22-28. |
26 | STOLBOV S, RAHMAN T S. First-principles study of some factors controlling the rate of ammonia decomposition on Ni and Pd surfaces[J]. The Journal of Chemical Physics, 2005, 123(20): 204716. |
27 | PLANA C, ARMENISE S, MONZÓN A, et al. Process optimisation of in situ H2 generation from ammonia using Ni on alumina coated cordierite monoliths[J]. Topics in Catalysis, 2011, 54(13/14/15): 914-921. |
28 | OKURA K, OKANISHI T, MUROYAMA H, et al. Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst[J]. Applied Catalysis A: General, 2015, 505: 77-85. |
29 | CHELLAPPA A S, FISCHER C M, THOMSON W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications[J]. Applied Catalysis A: General, 2002, 227(1/2): 231-240. |
82 | MIAO Meng, GONG Xiaojing, LEI Shulai, et al. The graphene-supported non-noble metal catalysts activate ammonia decomposition: a DFT study[J]. Chemical Physics, 2021, 548: 111249-11254. |
83 | LIU Hongchao, WANG Hua, SHEN Jianghan, et al. Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition[J]. Catalysis Today, 2008, 131(1/2/3/4): 444-449. |
84 | VACHARAPONG P, ARAYAWATE S, HENPRASERTTAE S, et al. Effect of magnetic inducement in preparation of Ni/Ce-doped Al2O3 for ammonia decomposition[J]. ChemistrySelect, 2019, 4(40): 11913-11919. |
85 | ZHENG Weiqing, ZHANG Jian, GE Qingjie, et al. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen[J]. Applied Catalysis B: Environmental, 2008, 80(1/2): 98-105. |
86 | HENPRASERTTAE S, CHAROJROCHKUL S, KLYSUBUN W, et al. Reduced temperature ammonia decomposition using Ni/Zr-doped Al2O3 catalyst[J]. Catalysis Letters, 2018, 148(6): 1775-1783. |
87 | OKURA Kaname, OKANISHI Takeou, MUROYAMA Hiroki, et al. Additive effect of alkaline earth metals on ammonia decomposition reaction over Ni/Y2O3 catalysts[J]. RSC Advances, 2016, 6(88): 85142-85148. |
88 | LI Lei, WU Jun, SHAO Jingling, et al. Impacts of SiO2 shell structure of Ni@SiO2 nanocatalysts on their performance for catalytic decomposition of ammonia[J]. Catalysis Letters, 2017, 147(1): 141-149. |
89 | YAO L H, LI Y X, ZHAO J, et al. Core-shell structured nanoparticles (M@SiO2, Al2O3, MgO; M=Fe, Co, Ni, Ru) and their application in CO x -free H2 production via NH3 decomposition[J]. Catalysis Today, 2010, 158(3/4): 401-408. |
90 | ZHANG Lingfeng, LI Min, REN Tiezhen, et al. Ce-modified Ni nanoparticles encapsulated in SiO2 for CO x -free hydrogen production via ammonia decomposition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2648-2656. |
91 | YAO Lianghong, SHI Tianbao, LI Yanxing, et al. Core–shell structured nickel and ruthenium nanoparticles: very active and stable catalysts for the generation of CO x -free hydrogen via ammonia decomposition[J]. Catalysis Today, 2011, 164(1): 112-118. |
30 | ZHANG Jian, XU Hengyong, LI Wenzhao. Kinetic study of NH3 decomposition over Ni nanoparticles: the role of La promoter, structure sensitivity and compensation effect[J]. Applied Catalysis A: General, 2005, 296(2): 257-267. |
31 | CHEN Shuangjing, CHEN Xin, ZHANG Hui. Nanoscale size effect of octahedral nickel catalyst towards ammonia decomposition reaction[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17122-17128. |
32 | LI Yanping, WEN Jie, Arshid M ALI, et al. Size structure-catalytic performance correlation of supported Ni/MCF-17 catalysts for CO x -free hydrogen production[J]. Chemical communications, 2018, 54(49): 6364-6367. |
33 | ZHANG Jian, XU Hengyong, JIN Xianglan, et al. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Applied Catalysis A: General, 2005, 290(1/2): 87-96. |
34 | SIMONSEN S B, CHAKRABORTY D, CHORKENDORFF I, et al. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition[J]. Applied Catalysis A: General, 2012, 447/448: 22-31. |
35 | HUANG Chuanqing, LI Huaxi, YANG Jinmei, et al. Ce0.6Zr0.3Y0.1O2 solid solutions-supported NiCo bimetal nanocatalysts for NH3 decomposition[J]. Applied Surface Science, 2019, 478: 708-716. |
36 | SHIMODA N, YOSHIMURA R, NUKUI T, et al. Alloying effect of nickel-cobalt based binary metal catalysts supported on α-alumina for ammonia decomposition[J]. Journal of Chemical Engineering of Japan, 2019, 52(5): 413-422. |
37 | WU Zewei, LI Xin, QIN Yuanhang, et al. Ammonia decomposition over SiO2-supported Ni-Co bimetallic catalyst for CO x -free hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(30): 15263-15269. |
38 | SILVA H, NIELSEN M G, FIORDALISO E M, et al. Synthesis and characterization of Fe-Ni/γ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition[J]. Applied Catalysis A: General, 2015, 505: 548-556. |
39 | HAN Xue, CHU Wei, NI Ping, et al. Promoting effects of iridium on nickel based catalyst in ammonia decomposition[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 691-695. |
40 | CHEN Xin, ZHOU Junwei, CHEN Shuangjing, et al. Catalytic performance of M@Ni (M = Fe, Ru, Ir) core-shell nanoparticles towards ammonia decomposition for CO x -free hydrogen production[J]. Journal of Nanoparticle Research, 2018, 20(6): 1-9. |
41 | YI Yanhui, WANG Li, GUO Yanjun, et al. Plasma-assisted ammonia decomposition over Fe-Ni alloy catalysts for CO x -free hydrogen[J]. AIChE Journal, 2019,65(2): 691-701. |
42 | 孙帅其, 易颜辉, 王丽, 等. 负载型双金属催化剂的制备及其等离子体催化氨分解制氢性能[J]. 物理化学学报, 2017, 33(6): 1123-1129. |
SUN Shuaiqi, YI Yanhui, WANG Li, et al. Preparation and performance of supported bimetallic catalysts for hydrogen production from ammonia decomposition by plasma catalysis[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1123-1129. | |
43 | LUCENTINI I, CASANOVAS A, LLORCA J. Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2 [J]. International Journal of Hydrogen Energy, 2019, 44(25): 12693-12707. |
44 | HANSGEN D A, VLACHOS D G, CHEN Jingguang. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction[J]. Nature Chemistry, 2010, 2(6): 484-489. |
45 | XIE Pengfei, YAO Yonggang, HUANG Zhennan, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts[J]. Nature Communications, 2019, 10(1): 4011-4022. |
46 | 王晓光, 韦永德, 张建, 等. 高效镍基氨分解催化体系中载体作用的研究[J]. 石油学报(石油加工), 2006, 22(5): 33-38. |
WANG Xiaoguang, WEI Yongde, ZHANG Jian, et al. Investigation on the role of support in the high-performance nickel-based catalytic system for ammonia decomposition[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2006, 22(5): 33-38. | |
47 | LIU Hongchao, WANG Hua, SHEN Jianghan, et al. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing CO x -free hydrogen from ammonia[J]. Applied Catalysis A: General, 2008, 337(2): 138-147. |
48 | ATSUMI R, NODA R, TAKAGI H, et al. Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters[J]. International Journal of Hydrogen Energy, 2014, 39(26): 13954-13961. |
49 | LI Lei, CHEN Feng, SHAO Jingling,, et al. Attapulgite clay supported Ni nanoparticles encapsulated by porous silica: thermally stable catalysts for ammonia decomposition to CO x free hydrogen[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21157-21165. |
50 | IM Y, MUROYAMA H, MATSUI T, et al. Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26979-26988. |
51 | DENG Qingfang, ZHANG Hui, HOU Xiaoxu, et al. High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2012, 37(21): 15901-15907. |
52 | MUROYAMA H, SABURI C, MATSUI T, et al. Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen[J]. Applied Catalysis A: General, 2012, 443/444: 119-124. |
53 | YU Yingzhi, GAN Yumeng, HUANG Chuanqing, et al. Ni/La2O3 and Ni/MgO-La2O3 catalysts for the decomposition of NH3 into hydrogen[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16528-16539. |
54 | HU Zhongpan, WENG Chenchen, CHEN Chong, et al. Catalytic decomposition of ammonia to CO x -free hydrogen over Ni/ZSM-5 catalysts: a comparative study of the preparation methods[J]. Applied Catalysis A: General, 2018, 562: 49-57. |
55 | SU Qin, GU Lingli, YAO Yao, et al. Layered double hydroxides derived Ni x (Mg y Al z O n ) catalysts: enhanced ammonia decomposition by hydrogen spillover effect[J]. Applied Catalysis B: Environmental, 2017, 201: 451-460. |
56 | ZHAO Jiawen, DENG Lidan, ZHENG Wei, et al. Nickel-induced structure transformation in hydrocalumite for enhanced ammonia decomposition[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12244-12255. |
57 | SATO K, ABE N, KAWAGOE T, et al. Supported Ni catalysts prepared from hydrotalcite-like compounds for the production of hydrogen by ammonia decomposition[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6610-6617. |
58 | OKURA K, MIYAZAKI K, MUROYAMA H, et al. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen[J]. RSC Advances, 2018, 8(56): 32102-32110. |
59 | KURTOĞLU S F, SARP S, YıLMAZ AKKAYA C, et al. CO x -free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9954-9968. |
60 | NAKAMURA I, FUJITANI T. Role of metal oxide supports in NH3 decomposition over Ni catalysts[J]. Applied Catalysis A: General, 2016, 524: 45-49. |
61 | HU Zhongpan, WENG Chenchen, YUAN Gege, et al. Ni nanoparticles supported on mica for efficient decomposition of ammonia to CO x -free hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(20): 9663-9676. |
62 | CAO Jianliang, YAN Zhaoli, DENG Qingfang, et al. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition[J]. Catalysis Science & Technology, 2014, 4(2): 361-368. |
63 | CAO Jianliang, YAN Zhaoli, DENG Qingfang, et al. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5747-5755. |
64 | JI Jian, DUAN Xuezhi, QIAN Gang, et al. In situ production of Ni catalysts at the tips of carbon nanofibers and application in catalytic ammonia decomposition[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1854-1858. |
65 | JI Jian, PHAM Thanh Hai, DUAN Xuezhi, et al. Morphology dependence of catalytic properties of Ni nanoparticles at the tips of carbon nanofibers for ammonia decomposition to generate hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20722-20730. |
66 | ZHANG Hui, ALHAMED Y A, KOJIMA Y, et al. Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition[J]. International Journal of Hydrogen Energy, 2014, 39(1): 277-287. |
67 | MENG Tao, XU Qianqian, LI Yintao, et al. Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen[J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 373-379. |
68 | GU Yingqiu, MA Yinglan, LONG Zhouyang, et al. One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4045-4054. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[14] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[15] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |