化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5029-5044.DOI: 10.16085/j.issn.1000-6613.2021-1110
邹文洪1(), 樊佑1, 张焱焱1, 白正帅1, 汤育欣1,2()
收稿日期:
2021-05-25
修回日期:
2021-07-15
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
汤育欣
作者简介:
邹文洪(1996—),男,博士研究生,研究方向为聚合物固态电解质开发。E-mail:基金资助:
ZOU Wenhong1(), FAN You1, ZHANG Yanyan1, BAI Zhengshuai1, TANG Yuxin1,2()
Received:
2021-05-25
Revised:
2021-07-15
Online:
2021-09-05
Published:
2021-09-13
Contact:
TANG Yuxin
摘要:
目前,大多数聚合物固态电解质在室温下离子电导率较低,约为10–8 ~10-6 S /cm,且对温度存在着较大的依赖性,仍无法满足高性能室温固态锂电池的实际应用需要。基于此,本文先介绍了室温聚合物电解质在锂离子电池中应用的主要研究进展及其优缺点。然后,从物理调控、化学调控等多角度重点阐述了室温聚合物电解质(包括全固态聚合物电解质、准固态聚合物电解质)的制备工艺、优化与改性方法、作用机理等在电池中应用的主要研究进展和现状。最后,对锂离子电池用室温聚合物电解质存在的挑战和未来可能发展趋势进行了展望。
中图分类号:
邹文洪, 樊佑, 张焱焱, 白正帅, 汤育欣. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044.
ZOU Wenhong, FAN You, ZHANG Yanyan, BAI Zhengshuai, TANG Yuxin. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044.
1 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
2 | ALIPOORI S, MAZINANI S, ABOUTALEBI S H, et al. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges[J]. Journal of Energy Storage, 2020, 27: 101072. |
3 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
4 | SHEN Z Z, LANG S Y, SHI Y, et al. Revealing the surface effect of the soluble catalyst on oxygen reduction/evolution in Li-O2 batteries[J]. Journal of the American Chemical Society, 2019, 141(17): 6900-6905. |
5 | 欧阳明高. 能源革命与新能源智能汽车[J]. 中国工业和信息化, 2019(11): 21-24. |
OUYANG Minggao. Energy revolution and new energy intelligent vehicle [J]. China Industry & Information Technology, 2019(11): 21-24. | |
6 | 程俊, 黄蕊, 雷惊雷, 等. 电化学能源核心技术的关键科学问题[J]. 中国科学基金, 2020, 34(3): 350-357. |
CHENG Jun, HUANG Rui, LEI Jinglei, et al. Key scientific questions in the core technologies of electrochemical energy[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(3): 350-357. | |
7 | 李栋, 郑育英, 南皓雄, 等. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014. |
LI Dong, ZHENG Yuying, Haoxiong NAN, et al. Electrolyte for solid lithium-sulfur batteries with high safety and high specific energy[J]. Progress in Chemistry, 2020, 32(7): 1003-1014. | |
8 | 石凯, 安德成, 贺艳兵, 等. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
SHI Kai, AN Decheng, HE Yanbing, et al. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. | |
9 | 张旭, 王志, 王旭, 等. 锂离子动力电池电解液的热稳定性[J]. 化工进展, 2016, 35(4): 1140-1143. |
ZHANG Xu, WANG Zhi, WANG Xu, et al. Thermal stability of high power lithium-ion battery electrolytes[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1140-1143. | |
10 | 李景坤, 廖小珍, 马紫峰. LiFePO4正极材料制备过程研究进展[J]. 化工进展, 2010, 29(8): 1508-1512. |
LI Jingkun, LIAO Xiaozhen, MA Zifeng. Research progress in preparation process of LiFePO4 cathode materials for lithium ion battery[J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1508-1512. | |
11 | CHEN S L, FENG F, YIN Y M, et al. Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries[J]. Energy Storage Materials, 2019, 22: 57-65. |
12 | ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects[J]. Chem, 2019, 5(9): 2326-2352. |
13 | JIANG Y, YAN X M, MA Z F, et al. Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries[J]. Polymers, 2018, 10(11): 1237. |
14 | ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): 1902029. |
15 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
16 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
17 | 张鹏, 李琳琳, 何丹农, 等. 锂离子电池凝胶聚合物电解质研究进展[J]. 高分子学报, 2011(2): 125-131. |
ZHANG Peng, LI Linlin, HE Dannong, et al. Research progress of gel polymer electrolytes for lithium ion batteries[J]. Acta Polymerica Sinica, 2011(2): 125-131. | |
18 | YAO P H, YU H B, DING Z Y, et al. Review on polymer-based composite electrolytes for lithium batteries[J]. Frontiers in Chemistry, 2019, 7: 522. |
19 | ASGHAR M R, ANWAR M T, NAVEED A, et al. A review on inorganic nanoparticles modified composite membranes for lithium-ion batteries: recent progress and prospects[J]. Membranes, 2019, 9(7): 78. |
20 | 马强, 戚兴国, 容晓晖, 等. 新型固态聚合物电解质在锂硫电池中的性能研究[J]. 储能科学与技术, 2016, 5(5): 713-718. |
MA Qiang, QI Xingguo, RONG Xiaohui, et al. Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 713-718. | |
21 | 张兰, 张世超. 锂电池凝胶聚合物电解质的研究进展[J]. 电源技术, 2013, 37(11): 2057-2059, 2082. |
ZHANG Lan, ZHANG Shichao. Progress of gel-polymer electrolyte for Li-ion battery[J]. Chinese Journal of Power Sources, 2013, 37(11): 2057-2059, 2082. | |
22 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
23 | LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Advanced Science, 2020, 7(5): 1903088. |
24 | WRIGHT P V. Electrical conductivity in ionic complexes of poly(ethylene oxide)[J]. British Polymer Journal, 1975, 7(5): 319-327. |
25 | WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602. |
26 | ARMAND M B. Polymer electrolytes[J]. Annual Review of Materials Science, 1986, 16(1): 245-261. |
27 | YANG L Y, WEI D X, XU M, et al. Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design[J]. Angewandte Chemie International Edition, 2014, 53(14): 3631-3635. |
28 | XU H T, ZHANG H R, MA J, et al. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes[J]. ACS Energy Letters, 2019, 4(12): 2871-2886. |
29 | CHEN L, FAN L Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15: 37-45. |
30 | ZHANG J J, ZHAO J H, YUE L P, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24): 1501082. |
31 | LI Y J, FAN C Y, ZHANG J P, et al. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Dalton Transactions, 2018, 47(42): 14932-14937. |
32 | TAN J W, AO X, ZHUO H, et al. Cryogenic engineering of solid polymer electrolytes for room temperature and 4 V-class all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2021, 420: 127623. |
33 | ZHOU W D, WANG Z X, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): 1805574. |
34 | WANG A L, LIU X, WANG S, et al. Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018, 276: 184-193. |
35 | ROLLAND J, BRASSINNE J, BOURGEOIS J P, et al. Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2(30): 11839-11846. |
36 | MEABE L, HUYNH T V, LAGO N, et al. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries[J]. Electrochimica Acta, 2018, 264: 367-375. |
37 | ZHANG B H, LIU Y L, PAN X M, et al. Dendrite-free lithium metal solid battery with a novel polyester based triblock copolymer solid-state electrolyte[J]. Nano Energy, 2020, 72: 104690. |
38 | WANG S, WANG A L, LIU X, et al. Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 213-224. |
39 | CHEN Y, SHI Y, LIANG Y L, et al. Hyperbranched PEO-based hyperstar solid polymer electrolytes with simultaneous improvement of ion transport and mechanical strength[J]. ACS Applied Energy Materials, 2019, 2(3): 1608-1615. |
40 | JUNG Y C, PARK M S, KIM D H, et al. Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries[J]. Scientific Reports, 2017, 7(1): 1-11. |
41 | ZHOU B H, HE D, HU J, et al. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(25): 11725-11733. |
42 | ZHANG Y F, CAI W W, ROHAN R, et al. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. Journal of Power Sources, 2016, 306: 152-161. |
43 | ROHAN R, SUN Y B, CAI W W, et al. Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries[J]. Solid State Ionics, 2014, 268: 294-299. |
44 | ZHU M, WU J X, WANG Y, et al. Recent advances in gel polymer electrolyte for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2019, 37: 126-142. |
45 | DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: present, past and future[J]. Electrochimica Acta, 2011, 57: 4-13. |
46 | 刘文昊, 吴兴隆. 固态聚合物电解质的锂离子传导机理与研究进展[J]. 分子科学学报, 2016, 32(5): 379-395. |
LIU Wenhao, WU Xinglong. Work mechanism and research progress of solid polymer electrolytes for lithium-ion batteries[J]. Journal of Molecular Science, 2016, 32(5): 379-395. | |
47 | FEUILLADE G, PERCHE P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5(1): 63-69. |
48 | TANG X L, CAO Q, WANG X Y, et al. Study of the effect of a novel high-performance gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride)/polystyrene and formed using an electrospinning technique[J]. RSC Advances, 2015, 5(72): 58655-58662. |
49 | HSU C Y, LIU R J, HSU C H, et al. High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery[J]. RSC Advances, 2016, 6(22): 18082-18088. |
50 | ZHANG M Y, LI M X, CHANG Z, et al. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery[J]. Electrochimica Acta, 2017, 245: 752-759. |
51 | CHOI N S, LEE Y G, PARK J K, et al. Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a (PVDF-co-HFP)/PVAc blend[J]. Electrochimica Acta, 2001, 46(10/11): 1581-1586. |
52 | STEPHAN A M, THIRUNAKARAN R, RENGANATHAN N G, et al. A study on polymer blend electrolyte based on PVC/PMMA with lithium salt[J]. Journal of Power Sources, 1999, 81/82: 752-758. |
53 | CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem., 2019, 5(1): 74-96. |
54 | DAIGLE J C, VIJH A, HOVINGTON P, et al. Lithium battery with solid polymer electrolyte based on comb-like copolymers[J]. Journal of Power Sources, 2015, 279: 372-383. |
55 | XI J Y, QIU X P, LI J, et al. PVDF-PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity[J]. Journal of Power Sources, 2006, 157(1): 501-506. |
56 | LUO D, LI Y, LI W L, et al. Synthesis and characterization of novel semi-interpenetrating polymer network electrolyte based on crosslinked P(GMA-co-AN)/PEO[J]. Journal of Applied Polymer Science, 2008, 108(4): 2095-2100. |
57 | NISHIMOTO A, AGEHARA K, FURUYA N, et al. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains[J]. Macromolecules, 1999, 32(5): 1541-1548. |
58 | 胡拥军, 陈白珍, 李义兵, 等. 增塑型锂离子电池聚合物电解质[J]. 化工进展, 2006, 25(2): 163-166. |
HU Yongjun, CHEN Baizhen, LI Yibing, et al. Progress of plasticized polymer electrolyte for Li-ion battery[J]. Chemical Industry and Engineering Progress, 2006, 25(2): 163-166. | |
59 | BOHNKE O, FRAND G, REZRAZI M, et al. Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration[J]. Solid State Ionics, 1993, 66(1/2): 97-104. |
60 | LU Q W, FANG J H, YANG J, et al. A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries[J]. Journal of Membrane Science, 2013, 425/426: 105-112. |
61 | APPETECCHI G B, SCROSATI B. A lithium ion polymer battery[J]. Electrochimica Acta, 1998, 43(9): 1105-1107. |
62 | 王特, 蒋立, 田晓录, 等. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142. |
WANG Te, JIANG Li, TIAN Xiaolu, et al. Research progress of lithium ion batteries safety materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. | |
63 | LI L B, WANG F R, LI J S, et al. Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12087-12093. |
64 | VIGNAROOBAN K, DISSANAYAKE M A K L, ALBINSSON I, et al. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes[J]. Solid State Ionics, 2014, 266: 25-28. |
65 | XIONG H M, WANG Z D, XIE D P, et al. Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries[J]. Journal of Materials Chemistry, 2006, 16(14): 1345. |
66 | XIONG H M, WANG Z D, LIU D P, et al. Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity[J]. Advanced Functional Materials, 2005, 15(11): 1751-1756. |
67 | DISSANAYAKE M A K L, JAYATHILAKA P A R D, BOKALAWALA R S P, et al. Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: Al2O3 composite polymer electrolyte[J]. Journal of Power Sources, 2003, 119/120/121: 409-414. |
68 | LI C C, QIN B S, ZHANG Y F, et al. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries[J]. Advanced Energy Materials, 2019, 9(10): 1803422. |
69 | ZHU Y H, CAO J, CHEN H, et al. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(12): 6832-6839. |
70 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184. |
71 | HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. |
72 | 张建军, 杨金凤, 吴瀚, 等. 二次电池用原位生成聚合物电解质的研究进展[J]. 高分子学报, 2019, 50(9): 890-914. |
ZHANG Jianjun, YANG Jinfeng, WU Han, et al. Research progress of in situ generated polymer electrolyte for rechargeable batteries[J]. Acta Polymerica Sinica, 2019, 50(9): 890-914. | |
73 | JU J W, WANG Y T, CHEN B B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13588-13597. |
74 | DUAN H, YIN Y X, ZENG X X, et al. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries[J]. Energy Storage Materials, 2018, 10: 85-91. |
75 | LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte viain situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. |
76 | ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365-373. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[3] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[4] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[5] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[6] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[7] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[8] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[9] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[10] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[11] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[12] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[13] | 何志勇, 郭天佛, 王金利, 吕锋. 二氧化碳/环氧化合物开环共聚催化剂进展[J]. 化工进展, 2023, 42(4): 1847-1859. |
[14] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
[15] | 张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |