化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5012-5028.DOI: 10.16085/j.issn.1000-6613.2021-0399
收稿日期:
2021-03-01
修回日期:
2021-03-30
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
吴正颖,孙林兵
作者简介:
俞明浩(1997—),男,硕士研究生,研究方向为功能材料。E-mail:基金资助:
YU Minghao1(), GU Mengxuan2, WU Zhengying1(), SUN Linbing2()
Received:
2021-03-01
Revised:
2021-03-30
Online:
2021-09-05
Published:
2021-09-13
Contact:
WU Zhengying,SUN Linbing
摘要:
能源是限制人类发展的重要因素,近年来随着新能源的发展,人们对于储能设备的要求也越来越高,其中,锂离子电池被认为是最具有发展前途的储能设备之一。目前,商用锂离子电池的负极材料以石墨为主,石墨虽然具有良好的导电性,但理论容量较低,已逐渐无法满足高能设备的大容量需求。过渡金属锰氧化物由于储量丰富、氧化形态多样、结构多元、理论比容量高、环境友好等特点,被认为是锂离子电池理想的替代负极材料之一。本文详细介绍了近年来4种锰氧化物(MnO、Mn2O3、Mn3O4和MnO2)分别在纳米化和复合结构构筑两方面的材料设计及合成,总结比较了4种锰氧化物用作锂离子电池负极材料的性能,展望了锰氧化物在锂离子电池负极材料领域的发展前景和方向。
中图分类号:
俞明浩, 顾梦旋, 吴正颖, 孙林兵. 锰氧化物的合成及在锂离子电池中的应用进展[J]. 化工进展, 2021, 40(9): 5012-5028.
YU Minghao, GU Mengxuan, WU Zhengying, SUN Linbing. Advances in the synthesis and application of manganese oxides as anode materials for lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5012-5028.
1 | POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. |
2 | 郝新丽. 多价态锰基氧化物纳米材料的设计合成及性能研究[D]. 长沙: 湖南大学, 2013. |
HAO Xinli. Designed synthesis and property study of manganese based oxides nanomaterials with varied valences[D]. Changsha: Hunan University, 2013. | |
3 | GU X, YUE J, LI L J, et al. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes[J]. Electrochimica Acta, 2015, 184: 250-256. |
4 | YU X Q, HE Y, SUN J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential[J]. Electrochemistry Communications, 2009, 11(4): 791-794. |
5 | CUI Z H, GUO X X, LI H. High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries[J]. Journal of Power Sources, 2013, 244: 731-735. |
6 | FAN X Y, LI S H, LU L. Porous micrometer-sized MnO cubes as anode of lithium ion battery[J]. Electrochimica Acta, 2016, 200: 152-160. |
7 | WEI Y Y, ZI Z F, CHEN B Z, et al. Facile synthesis of hollow MnO microcubes as superior anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 756: 93-102. |
8 | LI X W, LI D, QIAO L, et al. Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes[J]. Journal of Materials Chemistry, 2012, 22(18): 9189. |
9 | ZOU Y H, ZHANG W, CHEN N, et al. Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity[J]. ACS Nano, 2019, 13(2): 2062-2071. |
10 | LIU C F, ZHANG C K, SONG H Q, et al. Mesocrystal MnO cubes as anode for Li-ion capacitors[J]. Nano Energy, 2016, 22: 290-300. |
11 | WANG J G, ZHANG C B, JIN D D, et al. Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(26): 13699-13705. |
12 | SUN B, CHEN Z X, KIM H S, et al. MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(6): 3346-3349. |
13 | JIANG H, HU Y J, GUO S J, et al. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries[J]. ACS Nano, 2014, 8(6): 6038-6046. |
14 | TANG X M, SUI G, CAI Q, et al. Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(6): 2082-2088. |
15 | JIA J C, HU X, WEN Z H. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes[J]. Nano Research, 2018, 11(2): 1135-1145. |
16 | ZHU S, PU B W, SUI S M, et al. MnO nanoparticles@continuous carbon nanosheets for high performance lithium ion battery anodes[J]. Materials Letters, 2017, 189: 236-239. |
17 | XIA Y, XIAO Z, DOU X, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries[J]. ACS Nano, 2013, 7(8): 7083-7092. |
18 | LIN Y, ZHAO S P, QIAN J C, et al. Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance[J]. Journal of Materials Science, 2020, 55(5): 2139-2154. |
19 | ZHANG W, SHENG J Z, ZHANG J, et al. Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(43): 16936-16945. |
20 | ZHU G Y, WANG L, LIN H N, et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(18): 1800003. |
21 | WANG Y J, WU H, LIU Z F, et al. Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage[J]. Electrochimica Acta, 2019, 304: 158-167. |
22 | WANG Y H, DING X, WANG F, et al. Nanoconfined nitrogen-doped carbon-coated MnO nanoparticles in graphene enabling high performance for lithium-ion batteries and oxygen reduction reaction[J]. Chem. Sci., 2016, 7(7): 4284-4290. |
23 | HUANG H W, FAN S S, DONG W D, et al. Nitrogen-doped graphene in-situ modifying MnO nanoparticles for highly improved lithium storage[J]. Applied Surface Science, 2019, 473: 893-901. |
24 | ZHENG H, LI L, LU L, et al. Facile synthesis of porous Mn2O3 microspheres as anode materials for lithium ion batteries[J]. J. Nanosci. Nanotechnol., 2016, 16(1): 698-703. |
25 | YANG Z H, ZHANG W X, WANG Q, et al. Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3[J]. Chemical Physics Letters, 2006, 418(1/2/3): 46-49. |
26 | QIU Y C, XU G L, YAN K Y, et al. Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties[J]. Journal of Materials Chemistry, 2011, 21(17): 6346-6353. |
27 | DENG Y F, LI Z N, SHI Z C, et al. Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries[J]. RSC Advances, 2012, 2(11): 4645-4647. |
28 | ZHANG Y J, YAN Y, WANG X Y, et al. Facile synthesis of porous Mn2O3 nanoplates and their electrochemical behavior as anode materials for lithium ion batteries[J]. Chemistry, 2014, 20(20): 6126-6130. |
29 | ZHANG X, QIAN Y T, ZHU Y C, et al. Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance[J]. Nanoscale, 2014, 6(3): 1725-1731. |
30 | HE X, WANG J, JIA H P, et al. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2015, 293: 306-311. |
31 | ZOU F, HU X L, LI Z, et al. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries[J]. Adv. Mater., 2014, 26(38): 6622-6628. |
32 | LEE J H, SA Y J, KIM T K, et al. A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties[J]. J. Mater. Chem. A, 2014, 2(27): 10435-10443. |
33 | WANG Z Q, LI X, XU H, et al. Porous anatase TiO2 constructed from a metal-organic framework for advanced lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(31): 12571-12575. |
34 | ZHANG B W, HAO S J, XIAO D R, et al. Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials[J]. Materials & Design, 2016, 98: 319-323. |
35 | BAI Z C, ZHANG Y H, ZHANG Y W, et al. MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery[J]. Journal of Materials Chemistry A, 2015, 3(10): 5266-5269. |
36 | ZENG K W, LI X H, WANG Z X, et al. Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries[J]. Electrochimica Acta, 2017, 247: 795-802. |
37 | KANG E, JUNG Y S, KIM G H, et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Advanced Functional Materials, 2011, 21(22): 4349-4357. |
38 | ZHAO E Y, LIU X F, HU Z B, et al. Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2015, 294: 141-149. |
39 | HU Y Y, ZHOU Y K, WANG J, et al. Preparation and characterization of macroporous LiNi1/3Co1/3Mn1/3O2 using carbon sphere as template[J]. Materials Chemistry and Physics, 2011, 129(1/2): 296-300. |
40 | BAI Z C, ZHANG Y W, ZHANG Y H, et al. A large-scale, green route to synthesize of leaf-like mesoporous CuO as high-performance anode materials for lithium ion batteries[J]. Electrochimica Acta, 2015, 159: 29-34. |
41 | LIN H B, RONG H B, HUANG W Z, et al. Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(34): 14189. |
42 | SU H, XU Y F, FENG S C, et al. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES[J]. ACS Appl.Mater. Interfaces, 2015, 7(16): 8488-8494. |
43 | SHI S J, DENG S, ZHANG M, et al. Rapid microwave synthesis of self-assembled hierarchical Mn2O3 microspheres as advanced anode material for lithium ion batteries[J]. Electrochimica Acta, 2017, 224: 285-294. |
44 | ZHOU Z, WANG L, LIANG J M, et al. Two-dimensional hierarchical Mn2O3@graphene as a high rate and ultrastable cathode for aqueous zinc-ion batteries[J]. Journal of Materials Chemistry C, 2021, 9(4): 1326-1332. |
45 | ZHOU Z, DING C Y, PENG W C, et al. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries[J]. Journal of Materials Science & Technology, 2021, 80: 13-19. |
46 | DUBAL D P, HOLZE R. High capacity rechargeable battery electrode based on mesoporous stacked Mn3O4 nanosheets[J]. RSC Advances, 2012, 2(32): 12096-12100. |
47 | ZHEN M, ZHANG Z, REN Q, et al. Room-temperature synthesis of ultrathin Mn3O4 nanosheets as anode materials for lithium-ion batteries[J]. Materials Letters, 2016, 177: 21-24. |
48 | GAO J, LOWE M A, ABRUÑA H D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(13): 3223-3227. |
49 | BUI P T M, SONG J H, LI Z Y, et al. Low temperature solution processed Mn3O4 nanoparticles: enhanced performance of electrochemical supercapacitors[J]. Journal of Alloys and Compounds, 2017, 694: 560-567. |
50 | BAI Z C, ZHANG X Y, ZHANG Y W, et al. Facile synthesis of mesoporous Mn3O4 nanorods as a promising anode material for high performance lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2(39): 16755-16760. |
51 | YU D W, HOU Y L, HAN X, et al. Enhanced lithium-ion storage performance from high aspect ratio Mn3O4 nanowires[J]. Materials Letters, 2015, 159: 182-184. |
52 | BAI Z C, FAN N, JU Z C, et al. Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10985-10990. |
53 | YANG Y C, HUANG X Y, XIANG Y, et al. Mn3O4 with different morphologies tuned through one-step electrochemical method for high-performance lithium-ion batteries anode[J]. Journal of Alloys and Compounds, 2019, 771: 335-342. |
54 | LIU K W, ZOU F, SUN Y D, et al. Self-assembled Mn3O4/C nanospheres as high-performance anode materials for lithium ion batteries[J]. Journal of Power Sources, 2018, 395: 92-97. |
55 | JIANG Y, YUE J L, GUO Q, et al. Highly porous Mn3O4 picro/nanocuboids with in situ coated carbon as advanced anode material for lithium-ion batteries[J]. Small, 2018, 14(19): 1704296. |
56 | WANG M Y, HUANG Y, ZHANG N, et al. A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes[J]. Chemical Engineering Journal, 2018, 334: 2383-2391. |
57 | ZHANG J, CHU R X, CHEN Y L, et al. Porous carbon encapsulated Mn3O4 for stable lithium storage and its ex-situ XPS study[J]. Electrochimica Acta, 2019, 319: 518-526. |
58 | SUN Y W, JIAO R R, ZUO X T, et al. Novel bake-in-salt method for the synthesis of mesoporous Mn3O4@C networks with superior cycling stability and rate performance[J]. ACS Appl. Mater. Interfaces, 2016, 8(51): 35163-35171. |
59 | WU Z S, REN W C, XU L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463-5471. |
60 | WANG G X, SHEN X P, YAO J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47(8): 2049-2053. |
61 | SUN Y Q, WU Q, SHI G Q. Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4(4): 1113. |
62 | YOO E J, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett., 2008, 8(8): 2277-2282. |
63 | CHEN C, JIAN H, FU X X, et al. Facile synthesis of graphene-supported mesoporous Mn3O4 nanosheets with a high-performance in Li-ion batteries[J]. RSC Advances, 2014, 4(11): 5367-5370. |
64 | LIU Y, WANG W, WANG Y W, et al. Binder-free three-dimensional porous Mn3O4 nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage[J]. RSC Advances, 2014, 4(31): 16374-16379. |
65 | WU L L, ZHAO D L, CHENG X W, et al. Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. Journal of Alloys and Compounds, 2017, 728: 383-390. |
66 | PARK S K, JIN A H, YU S H, et al. In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 120: 452-459. |
67 | WANG B B, LI F, WANG X J, et al. Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 364: 57-69. |
68 | CHAO D L, ZHU C R, XIA X H, et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries[J]. Nano Lett., 2015, 15(1): 565-573. |
69 | ZHU Y R, JI X B, PAN C C, et al. A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge[J]. Energy & Environmental Science, 2013, 6(12): 3665. |
70 | JING M J, WANG J F, HOU H S, et al. Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(32): 16824-16830. |
71 | EVANOFF K, BENSON J, SCHAUER M, et al. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode[J]. ACS Nano, 2012, 6(11): 9837-9845. |
72 | WANG N N, YUE J, CHEN L, et al. Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(19): 10348-10355. |
73 | SHIN J, SEO J K, YAYLIAN R, et al. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems[J]. International Materials Reviews, 2020, 65(6): 356-387. |
74 | MAJUMDAR D. Review on current progress of MnO2-based ternary nanocomposites for supercapacitor applications[J]. ChemElectroChem, 2021, 8(2): 291-336. |
75 | CHEN J B, WANG Y W, HE X M, et al. Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 142: 152-156. |
76 | LIU W B, ZHANG X Y, HUANG Y F, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery[J]. Journal of Energy Chemistry, 2021, 56: 365-373. |
77 | LI X W, LI D, WEI Z W, et al. Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes[J]. Electrochimica Acta, 2014, 121: 415-420. |
78 | MUNAIAH Y, SUNDARA RAJ B G, PREM KUMAR T, et al. Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior[J]. Journal of Materials Chemistry A, 2013, 1(13): 4300. |
79 | XU C J, LI B H, DU H D, et al. Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method[J]. Journal of Power Sources, 2008, 180(1): 664-670. |
80 | RAGUPATHY P, PARK D H, CAMPET G, et al. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor[J]. The Journal of Physical Chemistry C, 2009, 113(15): 6303–6309. |
81 | YU P, ZHANG X, CHEN Y, et al. Self-template route to MnO2 hollow structures for supercapacitors[J]. Materials Letters, 2010, 64(13): 1480-1482. |
82 | ZHANG W Y, ZHANG B Y, JIN H X, et al. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery[J]. Ceramics International, 2018, 44(16): 20441-20448. |
83 | VOSKANYAN A A, HO C K, CHAN K Y. 3D δ-MnO2 nanostructure with ultralarge mesopores as high-performance lithium-ion battery anode fabricated via colloidal solution combustion synthesis[J]. Journal of Power Sources, 2019, 421: 162-168. |
84 | JIANG Y, JIANG Z J, CHEN B H, et al. Morphology and crystal phase evolution induced performance enhancement of MnO2 grown on reduced graphene oxide for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(7): 2643-2650. |
85 | DENG J W, CHEN L F, SUN Y Y, et al. Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode[J]. Carbon, 2015, 92: 177-184. |
86 | YAO J, PAN Q J, YAO S S, et al. Mesoporous MnO2 nanosphere/graphene sheets as electrodes for supercapacitor synthesized by a simple and inexpensive reflux reaction[J]. Electrochimica Acta, 2017, 238: 30-35. |
87 | CHAE C J, KIM K W, YUN Y J, et al. Polyethylenimine-mediated electrostatic assembly of MnO2 nanorods on graphene oxides for use as anodes in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11499-11506. |
88 | YU A P, PARK H W, DAVIES A, et al. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries[J]. The Journal of Physical Chemistry Letters, 2011, 2(15): 1855-1860. |
89 | RANA M, AVVARU V SAI, BOARETTO N, et al. High rate hybrid MnO2@CNT fabric anodes for Li-ion batteries: properties and a lithium storage mechanism study by in situ synchrotron X-ray scattering[J]. Journal of Materials Chemistry A, 2019, 7(46): 26596-26606. |
90 | WU Y K, LI X J, XIAO Q Z, et al. The coaxial MnO2/CNTs nanocomposite freestanding membrane on SSM substrate as anode materials in high performance lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 834: 161-166. |
91 | MAO W F, AI G, DAI Y L, et al. In-situ synthesis of MnO2@CNT microsphere composites with enhanced electrochemical performances for lithium-ion batteries[J]. Journal of Power Sources, 2016, 310: 54-60. |
92 | LUAN Y T, YIN J L, CHENG K, et al. Facile synthesis of MnO porous sphere with N-doped carbon coated layer for high performance lithium-ion capacitors[J]. Journal of Electroanalytical Chemistry, 2019, 852: 113515. |
93 | SHENG L Z, JIANG H, LIU S P, et al. Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2018, 397: 325-333. |
94 | FANG Y C, HUANG Y D, ZHANG S, et al. Synthesis of unique hierarchical mesoporous layered-cube Mn2O3 by dual-solvent for high-capacity anode material of lithium-ion batteries[J]. Chemical Engineering Journal, 2017, 315: 583-590. |
95 | HAO Q, WANG J P, XU C X. Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries[J]. J. Mater. Chem. A, 2014, 2(1): 87-93. |
96 | WANG L C, LI L, WANG H Y, et al. Stable conversion Mn3O4 Li-ion battery anode material with integrated hierarchical and core-shell structure[J]. ACS Applied Energy Materials, 2019, 2(7): 5206-5213. |
97 | LIU H W, LIU J Y, YANG Z, et al. Controlled construction of hierarchical hollow micro/nano urchin-like β-MnO2 with superior lithium storage performance[J]. Journal of Alloys and Compounds, 2019, 795: 336-342. |
98 | ZANG J, YE J C, QIAN H, et al. Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries[J]. Electrochimica Acta, 2018, 260: 783-788. |
99 | LI L, RAJI A R, TOUR J M. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries[J]. Adv. Mater., 2013, 25(43): 6298-6302. |
100 | ZHANG Y, LIU H, ZHU Z H, et al. A green hydrothermal approach for the preparation of graphene/α-MnO2 3D network as anode for lithium ion battery[J]. Electrochimica Acta, 2013, 108: 465-471. |
101 | JIANG C, YUAN C P, LI P H, et al. Nitrogen-doped porous graphene with surface decorated MnO2 nanowires as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7251-7256. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[7] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[8] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[12] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[13] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[14] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[15] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |