化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1858-1872.DOI: 10.16085/j.issn.1000-6613.2021-0738
收稿日期:
2021-04-08
修回日期:
2021-08-21
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
吕维扬
作者简介:
甄建政(1993—),男,博士研究生,研究方向为功能性催化材料。E-mail:基金资助:
ZHEN Jianzheng(), NIE Shisong, PAN Shiyuan, LYU Weiyang(), YAO Yuyuan
Received:
2021-04-08
Revised:
2021-08-21
Online:
2022-04-23
Published:
2022-04-25
Contact:
LYU Weiyang
摘要:
碳基负载型催化材料凭借独特的负载结构、优异的化学稳定性和吸附特性等优势,在环境催化领域展现出广阔的应用前景,有望成为新一代绿色催化剂。研究不同维度的碳基负载金属材料与催化过一硫酸氢盐(PMS)降解污染物之间的相关性,对开发具有针对性应用的环境功能材料具有重要的指导意义。因此,本文从不同维度的碳基负载金属催化材料出发,综述了零维、一维、二维以及三维碳基负载金属催化剂活化PMS在水处理中的应用,探讨了碳基材料与其负载金属之间的相互作用、非金属元素掺杂对催化剂活性的影响以及PMS的活化机理。最后,对负载型环境催化材料未来的发展方向,如单原子催化、多反应中心体系和光电催化体系等新兴领域进行了分析和展望。
中图分类号:
甄建政, 聂士松, 潘世元, 吕维扬, 姚玉元. 多维度碳基负载金属催化剂活化PMS降解水中污染物的研究进展[J]. 化工进展, 2022, 41(4): 1858-1872.
ZHEN Jianzheng, NIE Shisong, PAN Shiyuan, LYU Weiyang, YAO Yuyuan. Research progress on advanced activation of peroxymonosulfate by multidimensional carbon-supported metal catalyst for degradation of organic pollutants in water[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1858-1872.
1 | YU M, TEEL A L, WATTS R J. Activation of peroxymonosulfate by subsurface minerals[J]. Journal of Contaminant Hydrology, 2016, 191: 33-43. |
2 | LI C Q, HUANG Y, DONG X B, et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine[J]. Applied Catalysis B: Environmental, 2019, 247: 10-23. |
3 | YE Z H, PADILLA J A, XURIGUERA E, et al. Magnetic MIL(Fe)-type MOF-derived N-doped nano-ZVI@C rods as heterogeneous catalyst for the electro-Fenton degradation of gemfibrozil in a complex aqueous matrix[J]. Applied Catalysis B: Environmental, 2020, 266: 118604. |
4 | ZHANG Y L, LI H, HUANG H W, et al. Graphene oxide-supported cobalt phthalocyanine as heterogeneous catalyst to activate peroxymonosulfate for efficient degradation of norfloxacin antibiotics[J]. Journal of Environmental Engineering, 2018, 144(7): 04018052. |
5 | NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. PNAS, 2005, 102(30): 10451-10453. |
6 | ZHANG L J, TONG T Z, WANG N, et al. Facile synthesis of yolk-shell Mn3O4 microspheres as a high-performance peroxymonosulfate activator for bisphenol A degradation[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21304-21311. |
7 | WANG Q Q, LUO W, CHEN X Q, et al. Porous-carbon-confined formation of monodisperse iron nanoparticle yolks toward versatile nanoreactors for metal extraction[J]. Chemistry - A European Journal, 2018, 24(58): 15663-15668. |
8 | DUAN P J, MA T F, YUE Y, et al. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation[J]. Environmental Science: Nano, 2019, 6(6): 1799-1811. |
9 | YANG Z Y, DAI D J, YAO Y Y, et al. Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst[J]. Chemical Engineering Journal, 2017, 322: 546-555. |
10 | LIN K-Y A, HSU F-K, LEE W-D. Magnetic cobalt-graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate[J]. Journal of Materials Chemistry A, 2015, 3(18): 9480-9490. |
11 | LI J Q, ZHAO S Y, ZHANG L J, et al. Cobalt single atoms embedded in nitrogen-doped graphene for selective oxidation of benzyl alcohol by activated peroxymonosulfate[J]. Small, 2021, 17(16):2004579. |
12 | CHU C, YANG J, ZHOU X, et al. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(2): 1242-1250. |
13 | YU X J, QU J, YUAN Z Y, et al. Anisotropic CoFe2O4@graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34222-34231. |
14 | QIN G Z, HAO K R, YAN Q B, et al. Exploring T-carbon for energy applications[J]. Nanoscale, 2019, 11(13): 5798-5806. |
15 | LIU R, QU F L, GUO Y L, et al. Au@carbon yolk-shell nanostructures via one-step core-shell-shell template[J]. Chemical Communications, 2014, 50(4): 478-480. |
16 | YANG T, LING H J, LAMONIER J F, et al. A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles[J]. NPG Asia Materials, 2016, 8(2): e240. |
17 | WANG N, MA W J, REN Z Q, et al. Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants[J]. Journal of Materials Chemistry A, 2018, 6(3): 884-895. |
18 | WANG X B, QIN Y L, ZHU L H, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11): 6855-6864. |
19 | LIU Y, WANG C, VEDER J P, et al. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage[J]. Journal of Colloid and Interface Science, 2018, 530: 556-566. |
20 | XIE M, TANG J C, FANG G D, et al. Biomass Schiff base polymer-derived N-doped porous carbon embedded with CoO nanodots for adsorption and catalytic degradation of chlorophenol by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 384: 121345. |
21 | ZOU C Y, MENG Z D, JI W C, et al. Preparation of a fullerene[60]-iron oxide complex for the photo-Fenton degradation of organic contaminants under visible-light irradiation[J]. Chinese Journal of Catalysis, 2018, 39(6): 1051-1059. |
22 | INDRAWIRAWAN S, SUN H Q, DUAN X G, et al. Nanocarbons in different structural dimensions (0-3D) for phenol adsorption and metal-free catalytic oxidation[J]. Applied Catalysis B: Environmental, 2015, 179: 352-362. |
23 | SEYMOUR M B, SU C M, GAO Y, et al. Characterization of carbon nano-Onions for heavy metal ion remediation[J]. Journal of Nanoparticle Research, 2012, 14(9): 1-13. |
24 | LIN K Y A, YANG M T, LIN J T, et al. Cobalt ferrite nanoparticles supported on electrospun carbon fiber as a magnetic heterogeneous catalyst for activating peroxymonosulfate[J]. Chemosphere, 2018, 208: 502-511. |
25 | ZHANG B T, ZHANG Y, TENG Y G. Electrospun magnetic cobalt-carbon nanofiber composites with axis-sheath structure for efficient peroxymonosulfate activation[J]. Applied Surface Science, 2018, 452: 443-450. |
26 | HUANG Z F, BAO H W, YAO Y Y, et al. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Applied Catalysis B: Environmental, 2014, 154/155: 36-43. |
27 | LUO L S, WU D, DAI D J, et al. Synergistic effects of persistent free radicals and visible radiation on peroxymonosulfate activation by ferric citrate for the decomposition of organic contaminants[J]. Applied Catalysis B: Environmental, 2017, 205: 404-411. |
28 | LIU S S, ZHAO X, WANG Y B, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode[J]. Journal of Catalysis, 2017, 355: 167-175. |
29 | 石晓飞, 姜沁源, 李润, 等. 碳纳米管水平阵列的结构控制生长: 进展与展望[J]. 化工学报, 2021, 72(1): 86-115. |
SHI Xiaofei, JIANG Qinyuan, LI Run, et al. Synthesis and structure control of horizontally aligned carbon nanotubes: progress and perspectives[J]. CIESC Journal, 2021, 72(1): 86-115. | |
30 | PENG Q, DAI Y, LIU K, et al. A novel carbon nanotube-magnesium oxide composite with excellent recyclability to efficiently activate peroxymonosulfate for Rhodamine B degradation[J]. Journal of Materials Science, 2020, 55(25): 11267-11283. |
31 | FENG M B, QU R J, ZHANG X L, et al. Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts[J]. Water Research, 2015, 85: 1-10. |
32 | YAO Y J, CHEN H, LIAN C, et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials, 2016, 314: 129-139. |
33 | HAO X M, WANG G L, CHEN S, et al. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Frontiers of Environmental Science & Engineering, 2019, 13(5): 1-11. |
34 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
35 | ZHAN G Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204. |
36 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
37 | ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. |
38 | HUANG H B, SHI H D, DAS P, et al. The chemistry and promising applications of graphene and porous graphene materials[J]. Advanced Functional Materials, 2020, 30(41): 1909035. |
39 | OLMEZ-HANCI T, ARSLAN-ALATON I, GURMEN S, et al. Oxidative degradation of bisphenol A by carbocatalytic activation of persulfate and peroxymonosulfate with reduced graphene oxide[J]. Journal of Hazardous Materials, 2018, 360: 141-149. |
40 | YAO Y J, YANG Z H, SUN H Q, et al. Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 14958-14965. |
41 | YAO Y J, CAI Y M, LU F, et al. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants[J]. Journal of Hazardous Materials, 2014, 270: 61-70. |
42 | PI Y Q, MA L J, ZHAO P, et al. Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride[J]. Journal of Colloid and Interface Science, 2018, 526: 18-27. |
43 | XU L J, CHU W, GAN L. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer[J]. Chemical Engineering Journal, 2015, 263: 435-443. |
44 | CHEN L W, DING D H, LIU C, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284. |
45 | LI X, HUANG X, XI S, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. |
46 | CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. |
47 | TABIT R, AMADINE O, ESSAMLALI Y, et al. Magnetic CoFe2O4 nanoparticles supported on graphene oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate activation and degradation of Rhodamine B[J]. RSC Advances, 2018, 8(3): 1351-1360. |
48 | PANG Y, LUO K, TANG L, et al. Carbon-based magnetic nanocomposite as catalyst for persulfate activation: a critical review[J]. Environmental Science and Pollution Research, 2019, 26(32): 32764-32776. |
49 | TETER D M, HEMLEY R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53-55. |
50 | XIE M, TANG J C, KONG L S, et al. Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation[J]. Chemical Engineering Journal, 2019, 360: 1213-1222. |
51 | LIU C, LIU L Y, TIAN X, et al. Coupling metal-organic frameworks and g-C3N4 to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: upgrading framework stability and performance[J]. Applied Catalysis B: Environmental, 2019, 255: 117763. |
52 | LI H C, SHAN C, PAN B C. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J].Environmental Science & Technology, 2018, 52(4): 2197-2205. |
53 | LI H C, SHAN C, PAN B C. Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway[J]. Science of the Total Environment, 2019, 675: 62-72. |
54 | WANG W Y, XU Y L, ZHONG D J, et al. Electron utilization efficiency of ZVI core activating PMS enhanced by C-N/g-C3N4 shell[J]. Applied Catalysis A: General, 2020, 608: 117828. |
55 | WANG F, WANG Y, LI Y, et al. The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate[J]. Dalton Transactions, 2018, 47(20): 6924-6933. |
56 | ZHANG W H, BIAN Z Y, XIN X, et al. Comparison of visible light driven H2O2 and peroxymonosulfate degradation of norfloxacin using Co/g-C3N4 [J]. Chemosphere, 2021, 262: 127955. |
57 | MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178-188. |
58 | CHEN S, LIU X D, GAO S Y, et al. CuCo2O4 supported on activated carbon as a novel heterogeneous catalyst with enhanced peroxymonosulfate activity for efficient removal of organic pollutants[J]. Environmental Research, 2020, 183: 109245. |
59 | HUANG T Y, CHEN J B, WANG Z M, et al. Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation[J]. Environmental Science and Pollution Research, 2017, 24(10): 9651-9661. |
60 | YANG G, DONG J W, XING B, et al. Ni, Fe, and N-tridoped activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of organic pollutant in water[J]. Separation and Purification Technology, 2020, 252: 117440. |
61 | XU J C, XIN P H, HAN Y B, et al. Magnetic response and adsorptive properties for methylene blue of CoFe2O4/Co x Fe y a ctivated carbon magnetic composites[J]. Journal of Alloys and Compounds, 2014, 617: 622-626. |
62 | ZHANG Y, ZHANG B T, TENG Y G, et al. Activated carbon supported nanoscale zero valent iron for cooperative adsorption and persulfate-driven oxidation of ampicillin[J]. Environmental Technology & Innovation, 2020, 19: 100956. |
63 | LI Y F, YAN X L, HU X Y, et al. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water[J]. Chemical Engineering Journal, 2019, 375: 122003. |
64 | JORFI S, KAKAVANDI B, MOTLAGH H R, et al. A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2 IIIO4@C as an efficient activator of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2017, 219: 216-230. |
65 | RE N W J, GAO J K, LEI C, et al. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants[J]. Chemical Engineering Journal, 2018, 349: 766-774. |
66 | WANG L Y, XU H, GAO J K, et al. Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications[J]. Coordination Chemistry Reviews, 2019, 398: 213016. |
67 | YUAN R X, HU L, YU P, et al. Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: a synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants[J]. Chemosphere, 2018, 210: 877-888. |
68 | LI X R, ZHANG D N, LIU Z H, et al. Enhanced catalytic oxidation of benzotriazole via peroxymonosulfate activated by CoFe2O4 supported onto nitrogen-doped three-dimensional graphene aerogels[J]. Chemical Engineering Journal, 2020, 400: 125897. |
69 | HU P D, LONG M C, BAI X, et al. Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water[J]. Journal of Hazardous Materials, 2017, 332: 195-204. |
70 | 胡培栋. 催化活化PMS的碳基材料及其降解有机污染物的性能研究[D]. 上海: 上海交通大学, 2017. |
HU Peidong. Study on PMS activating carbon-based materials and their organic pollutants degradation performance[D]. Shanghai: Shanghai Jiaotong University, 2017. | |
71 | LIU W J, CAI J Y, DING Z X, et al. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 174/175: 421-426. |
72 | XUE Q, DING Y, XUE Y Y, et al. 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction[J]. Carbon, 2018, 139: 137-144. |
73 | SHEN K, CHEN L, LONG J L, et al. MOFs-templated Co@Pd core-shell NPs embedded in N-doped carbon matrix with superior hydrogenation activities[J]. ACS Catalysis, 2015, 5(9): 5264-5271. |
74 | DUAN X G, SUN H Q, KANG J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. ACS Catalysis, 2015, 5(8): 4629-4636. |
75 | WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794. |
76 | GUO Y P, ZENG Z Q, ZHU Y C, et al. Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene[J]. Applied Catalysis B: Environmental, 2018, 220: 635-644. |
77 | HUANG Q Q, ZHANG J Y, HE Z Y, et al. Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation[J]. Chemical Engineering Journal, 2017, 313: 1088-1098. |
78 | REN W, NIE G, ZHOU P, et al. The intrinsic nature of persulfate activation and N-doping in carbocatalysis[J]. Environmental Science & Technology, 2020, 54(10): 6438-6447. |
79 | LIANG P, ZHANG C, DUAN X G, et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate[J]. Environmental Science: Nano, 2017, 4(2): 315-324. |
80 | DENG D H, YU L, CHEN X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie, 2013, 125(1): 389-393. |
81 | ZENG T, YU M D, ZHANG H Y, et al. Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation[J]. Catalysis Science & Technology, 2017, 7(2): 396-404. |
82 | ZHAO L Y, HE R, RIM K T, et al. Visualizing individual nitrogen dopants in monolayer graphene[J]. Science, 2011, 333(6045): 999-1003. |
83 | GUO Y P, ZENG Z Q, LI Y L, et al. Catalytic oxidation of 4-chlorophenol on in situ sulfur-doped activated carbon with sulfate radicals[J]. Separation and Purification Technology, 2017, 179: 257-264. |
84 | DU W Y, ZHANG Q Z, SHANG Y N, et al. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2020, 262: 118302. |
85 | PU M J, MA Y W, WAN J Q, et al. Fe/S doped granular activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of Orange G and diethyl phthalate[J]. Journal of Colloid and Interface Science, 2014, 418: 330-337. |
86 | GUO Y P, ZENG Z Q, LI Y L, et al. In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics[J]. Catalysis Today, 2018, 307: 12-19. |
87 | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. |
XIAO Pengfei, AN Lu, HAN Shuang. Research advances on applying carbon materials to activate persulfate in advanced oxidation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306. | |
88 | WANG Y B, LIU M, ZHAO X, et al. Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon[J]. Carbon, 2018, 135: 238-247. |
89 | YANG L J, JIANG S J, ZHAO Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2011, 50(31): 7132-7135. |
90 | KONG X, SUN Z, CHEN Q. The positive influence of boron-doped graphene for its supported Au clusters: enhancement of SERS and oxygen molecule adsorption[J]. Physical Chemistry Chemical Physics, 2012, 14(39): 13564-13568. |
91 | KONG X K, CHEN Q W. The positive influence of boron-doped graphene with pyridine as a probe molecule on SERS: a density functional theory study[J]. Journal of Materials Chemistry, 2012, 22(30): 15336-15341. |
92 | DUAN X G, INDRAWIRAWAN S, SUN H Q, et al. Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis[J]. Catalysis Today, 2015, 249: 184-191. |
93 | WANG S Y, IYYAMPERUMAL E, ROY A, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011, 50(49): 11756-11760. |
94 | DUAN X G, SUN H Q, WANG S B. Metal-free carbocatalysis in advanced oxidation reactions[J]. Accounts of Chemical Research, 2018, 51(3): 678-687. |
95 | ZHENG Y, JIAO Y, GE L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116. |
96 | ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. |
97 | OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. |
98 | LI Y, LIU L D, LIU L, et al. Efficient oxidation of phenol by persulfate using manganite as a catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2016, 411: 264-271. |
99 | HUANG K C, ZHAO Z Q, HOAG G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560. |
100 | RESHETNYAK O V, KOVAL’CHUK E P, SKURSKI P, et al. The origin of luminescence accompanying electrochemical reduction or chemical decomposition of peroxydisulfates[J]. Journal of Luminescence, 2003, 105(1): 27-34. |
101 | SUN B J, MA W J, WANG N, et al. Polyaniline: a new metal-free catalyst for peroxymonosulfate activation with highly efficient and durable removal of organic pollutants[J]. Environmental Science & Technology, 2019, 53(16): 9771-9780. |
102 | ZHANG T, CHEN Y, WANG Y R, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10): 5868-5875. |
103 | DING Y B, WANG X R, FU L B, et al. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective[J]. Science of the Total Environment, 2021, 765: 142794. |
104 | ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen[J]. Water Research, 2017, 125: 209-218. |
105 | HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. |
106 | YANG W C, JIANG Z, HU X X, et al. Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process[J]. Chemosphere, 2019, 220: 514-522. |
107 | ZHU J H, YU F L, MENG J R, et al. Overlooked role of Fe(Ⅳ) and Fe(Ⅴ) in Organic Contaminant oxidation by Fe( Ⅵ )[J]. Environmental Science & Technology, 2020, 54: 9702-9710. |
108 | CHEN J B, ZHOU X F, SUN P Z, et al. Complexation enhances Cu( Ⅱ )-activated peroxydisulfate: a novel activation mechanism and Cu(Ⅲ) contribution[J]. Environmental Science & Technology, 2019, 53(20): 11774-11782. |
109 | LEE H, LEE H J, JEONG J, et al. Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism[J]. Chemical Engineering Journal, 2015, 266: 28-33. |
110 | MA W J, WANG N, FAN Y N, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 336: 721-731. |
111 | HU P D, SU H R, CHEN Z Y, et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51(19): 11288-11296. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[12] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[13] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[14] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[15] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |