1 |
ANDERSEN M, MEDFORD A J, NØRSKOV J K, et al. Analyzing the case for bifunctional catalysis[J]. Angewandte Chemie:International Edition, 2016, 55(17): 5210-5214.
|
2 |
ZHENG R Y, LIU Z C, WANG Y D, et al. Industrial catalysis: strategies to enhance selectivity[J]. Chinese Journal of Catalysis, 2020, 41(7): 1032-1038.
|
3 |
TOMASEK S, LONYI F, VALYON J, et al. Hydrocracking of Fischer-Tropsch paraffin mixtures over strong acid bifunctional catalysts to engine fuels[J]. ACS Omega, 2020, 5(41): 26413-26420.
|
4 |
JAROSZEWSKA K, MASALSKA A, GRZECHOWIAK J R. Hydroisomerization of long-chain bio-derived n-alkanes into monobranched high cetane isomers via a dual-component catalyst bed[J]. Fuel, 2020, 268: 117239.
|
5 |
JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
6 |
刘宇, 谭涓, 刘靖, 等. Pt/ZSM-35催化长链正构生物烷烃加氢裂化/异构化制航空煤油[J]. 化工进展, 2020, 39(12): 5086-5094.
|
|
LIU Yu, TAN Juan, LIU Jing, et al. Production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins over Pt/ZSM-35 catalysts[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5086-5094.
|
7 |
徐铁钢, 吴显军, 王刚, 等. 轻质烷烃异构化催化剂研究进展[J]. 化工进展, 2015, 34(2): 397-401.
|
|
XU Tiegang, WU Xianjun, WANG Gang, et al. Light paraffin isomerizadon catalyst and its development[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 397-401.
|
8 |
GUISNET M. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218/219: 123-134.
|
9 |
TAN Y C, HU W J, DU Y Y, et al. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: a review[J]. Applied Catalysis A: General, 2021, 611: 117916.
|
10 |
毕云飞, 夏国富, 黄卫国, 等. 加氢异构化催化剂的研究——加氢功能的影响[J]. 石油学报(石油加工), 2018, 34(1): 64-70.
|
|
BI Yunfei, XIA Guofu, HUANG Weiguo, et al. Investigation on the hydroisomerization catalyst—The effect of the hydrogenation function[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(1): 64-70.
|
11 |
WEISZ P B. Polyfunctional heterogeneous catalysis[J]. Advances in Catalysis, 1962, 13: 137-190.
|
12 |
SAMAD J E, BLANCHARD J, SAYAG C, et al. The controlled synthesis of metal-acid bifunctional catalysts: the effect of metal: acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization[J]. Journal of Catalysis, 2016, 342: 203-212.
|
13 |
ZHANG Y D, LIU D, MEN Z W, et al. Hydroisomerization of n-dodecane over bi-porous Pt-containing bifunctional catalysts: effects of alkene intermediates’ journey distances within the zeolite micropores[J]. Fuel, 2019, 236: 428-436.
|
14 |
ZEČEVIĆ J, VANBUTSELE G, DE JONG K P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-248.
|
15 |
CHENG K, WAL L I, YOSHIDA H, et al. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes[J]. Angewandte Chemie:International Edition, 2020, 59(9): 3592-3600.
|
16 |
MOUSSA O BEN, TINAT L, JIN X J, et al. Heteroaggregation and selective deposition for the fine design of nanoarchitectured bifunctional catalysts: application to hydroisomerization[J]. ACS Catalysis, 2018, 8(7): 6071-6078.
|
17 |
OENEMA J, HARMEL J, VÉLEZ R P, et al. Influence of nanoscale intimacy and zeolite micropore size on the performance of bifunctional catalysts for n-heptane hydroisomerization[J]. ACS Catalysis, 2020, 10(23): 14245-14257.
|
18 |
MENDES P S F, SILVA J M, RIBEIRO M F, et al. Bifunctional intimacy and its interplay with metal-acid balance in shaped hydroisomerization catalysts[J]. ChemCatChem, 2020, 12(18): 4582-4592.
|
19 |
WHITING G T, CHUNG S H, STOSIC D, et al. Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties[J]. ACS Catalysis, 2019, 9(6): 4792-4803.
|
20 |
MITCHELL S, MICHELS N L, PÉREZ-RAMÍREZ J. From powder to technical body: the undervalued science of catalyst scale up[J]. Chemical Society Reviews, 2013, 42(14): 6094-6112.
|
21 |
WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187.
|
22 |
CHEN L H, SUN M H, WANG Z, et al. Hierarchically structured zeolites: from design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294.
|
23 |
KERSTENS D, SMEYERS B, WAEYENBERG J VAN, et al. State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis[J]. Advanced Materials, 2020, 32(44): e2004690. DOI:10.1002/adma.202004690.
|
24 |
ZHANG L, FU W Q, HE L W, et al. Design and synthesis of Pt catalyst supported on ZSM-22 nanocrystals with increased accessible 10-MR pore mouths and acidic sites for long-chain n-alkane hydroisomerization[J]. Microporous and Mesoporous Materials, 2021, 313: 110834.
|
25 |
PASTVOVA J, KAUCKY D, MORAVKOVA J, et al. Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-hexane[J]. ACS Catalysis, 2017, 7(9): 5781-5795.
|
26 |
SAZAMA P, PASTVOVA J, KAUCKY D, et al. Does hierarchical structure affect the shape selectivity of zeolites? Example of transformation of n-hexane in hydroisomerization[J]. Journal of Catalysis, 2018, 364: 262-270.
|
27 |
LIU S Y, REN J, ZHANG H K, et al. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J]. Journal of Catalysis, 2016, 335: 11-23.
|
28 |
PENG S, GAO M, LI H, et al. Control of surface barriers in mass transfer to modulate methanol-to-olefins reaction over SAPO-34 zeolites[J]. Angewandte Chemie:International Edition, 2020, 59(49): 21945-21948.
|
29 |
ZHOU J, FAN W, WANG Y D, et al. The essential mass transfer step in hierarchical/nano zeolite: surface diffusion[J]. National Science Review, 2020, 7(11): 1630-1632.
|
30 |
WANG D X, LIU J C, CHENG X S, et al. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes[J]. Small Methods, 2019, 3(5): 1800510.
|
31 |
LYU Y C, ZHAN W L, YU Z M, et al. One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst[J]. Journal of Materials Science & Technology, 2021, 76: 86-94.
|
32 |
宋兆阳, 张征太, 陈金射, 等. Pt-M双金属双功能轻质烷烃异构化催化剂的研究进展[J]. 石油化工, 2017, 46(1): 1-8.
|
|
SONG Zhaoyang, ZHANG Zhengtai, CHEN Jinshe, et al. Progresses in Pt-M bimetallic bifunctional catalysts for isomerization of light alkanes[J]. Petrochemical Technology, 2017, 46(1): 1-8.
|
33 |
KIM J, HAN S W, KIM J C, et al. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane[J]. ACS Catalysis, 2018, 8(11): 10545-10554.
|
34 |
YOSHIOKA C M N, JORDÃO M H, ZANCHET D, et al. A new activation process of bimetallic catalysts and application to the n-hexane isomerization[J]. Applied Catalysis A: General, 2009, 355(1/2): 20-26.
|
35 |
LIMA P M, GARETTO T, CAVALCANTE J R C L, et al. Isomerization of n-hexane on Pt-Ni catalysts supported on nanocrystalline H-BEA zeolite[J]. Catalysis Today, 2011, 172(1): 195-202.
|
36 |
ZHENG R, ZHENG P, DONG X, et al. Preferential surface decoration of supported Co catalysts with Pt for aromatic saturation[J]. China Petroleum Processing and Petrochemical Technology, 2018, 20: 1-7.
|
37 |
DONG X, ZHENG P, ZHENG A G, et al. Noble-metal efficient Pt-Ir-Co/SiO2 catalyst for selective hydrogenolytic ring opening of methylcyclopentane[J]. Catalysis Today, 2018, 316: 162-170.
|
38 |
LANG R, DU X R, HUANG Y K, et al. Single-atom catalysts based on the metal-oxide interaction[J]. Chemical Reviews, 2020, 120(21): 11986-12043.
|