1 |
石永桂. 超低/近零能耗建筑发展综述[J]. 北方建筑, 2019, 4(2): 50-53.
|
|
SHI Yonggui. Overview of the development of ultra-low/near-zero energy buildings[J]. Northern Architecture, 2019, 4(2): 50-53.
|
2 |
魏楚, 沈子玥. 基于城乡视角的居民能源消费影响因素研究[J]. 经济理论与经济管理, 2019(12): 4-16.
|
|
WEI Chu, SHEN Ziyue. Determinants of residential energy consumption: a urban-rural comparison[J]. Economic Theory and Business Management, 2019(12): 4-16.
|
3 |
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告农村住宅专题2020版[M]. 北京:中国建筑工业出版社, 2020: 115.
|
|
THUBERC. 2020 Annual report on China building energy efficiency[M]. Beijing: China Architecture & Building Press, 2020: 115.
|
4 |
KIM Taeyeon, Sangmin AHN, LEIGH Seug Bok. Energy consumption analysis of a residential building with phase change materials under various cooling and heating conditions[J]. Indoor and Built Environment, 2014, 23(5): 730-741.
|
5 |
杨柳, 乔宇豪, 刘衍, 等. 建筑相变蓄热及夜间通风技术研究进展[J]. 科学通报, 2018, 63(7): 629-640.
|
|
YANG Liu, QIAO Yuhao, LIU Yan, et al. Review of phase change heat storage and night ventilation technology of buildings[J]. Chinese Science Bulletin, 2018, 63(7): 629-640.
|
6 |
王柏超, 李栋, 陈宏坤, 等. 相变储能技术调控温室热环境研究进展[J]. 建筑热能通风空调, 2020, 39(12): 49-53.
|
|
WANG Baichao, LI Dong, CHEN Hongkun, et al. Research progress on phase change energy storage technology regulating greenhouse thermal environment[J]. Building Energy & Environment, 2020, 39(12): 49-53.
|
7 |
JIN X, SHI D J, MEDINA M A, et al. Optimal location of PCM layer in building walls under Nanjing (China) weather conditions[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1767-1778.
|
8 |
LIU J, LIU Y, YANG L, et al. Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China[J]. Renewable Energy, 2020, 147: 356-373.
|
9 |
李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432.
|
|
LI Xinghui, CHEN Minzhi, ZHOU Xiaoyan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432.
|
10 |
GUARINO F, ATHIENITIS A, CELLURA M, et al. PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates[J]. Applied Energy, 2017, 185: 95-106.
|
11 |
SOLGI E, HAMEDANI Z, FERNANDO R, et al. A parametric study of phase change material behaviour when used with night ventilation in different climatic zones[J]. Building and Environment, 2019, 147: 327-336.
|
12 |
YU J H, YANG Q C, YE H, et al. Thermal performance evaluation and optimal design of building roof with outer-layer shape-stabilized PCM[J]. Renewable Energy, 2020, 145: 2538-2549.
|
13 |
ZWANZIG S D, LIAN Y S, BREHOB E G. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope[J]. Energy Conversion and Management, 2013, 69: 27-40.
|
14 |
ALAM M, JAMIL H, SANJAYAN J, et al. Energy saving potential of phase change materials in major Australian cities[J]. Energy and Buildings, 2014, 78: 192-201.
|
15 |
SO R M C, LEUNG R C K, KAM E W S, et al. Progress in the development of a new lattice Boltzmann method[J]. Computers & Fluids, 2019, 190: 440-469.
|
16 |
REN Q L, CHAN C L. GPU accelerated numerical study of PCM melting process in an enclosure with internal fins using lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 100: 522-535.
|
17 |
KANT K, SHUKLA A, SHARMA A. Heat transfer studies of building brick containing phase change materials[J]. Solar Energy, 2017, 155: 1233-1242.
|
18 |
China Weather Network[DB/OL]. [2020-09-02]. .
|
19 |
HICHEM N, NOUREDDINE S, NADIA S, et al. Experimental and numerical study of a usual brick filled with PCM to improve the thermal inertia of buildings[J]. Energy Procedia, 2013, 36: 766-775.
|
20 |
SUZUKI K, KAWASAKI T, FURUMACHI N, et al. A thermal immersed boundary-lattice Boltzmann method for moving-boundary flows with Dirichlet and Neumann conditions[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1099-1117.
|
21 |
IMANUVILOV O Y, UHLMANN G, YAMAMOTO M. The Neumann-to-Dirichlet map in two dimensions[J]. Advances in Mathematics, 2015, 281: 578-593.
|
22 |
BALLIM Y. A numerical model and associated calorimeter for predicting temperature profiles in mass concrete[J]. Cement and Concrete Composites, 2004, 26 (6): 695-703.
|
23 |
LUO Z Q, XU H T, LOU Q, et al. GPU-accelerated lattice Boltzmann simulation of heat transfer characteristics of porous brick roof filled with phase change materials[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104911.
|