1 |
BASTAKOTI D, ZHANG H N, LI D, et al. An overview on the developing trend of pulsating heat pipe and its performance[J]. Applied Thermal Engineering, 2018, 141: 305-332.
|
2 |
HAN X H, WANG X H, ZHENG H C, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709.
|
3 |
屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41.
|
|
QU Jian. Oscillating heat pipes: state of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41.
|
4 |
AYEL V, ARANEO L, MARZORATI P, et al. Visualization of flow patterns in closed loop flat plate pulsating heat pipe acting as hybrid thermosyphons under various gravity levels[J]. Heat Transfer Engineering, 2019, 40(3/4): 227-237.
|
5 |
李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270.
|
|
LI Xiaojun, QU Jian, HAN Xinyue, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270.
|
6 |
KWON G H, KIM S J. Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel[J]. International Journal of Heat and Mass Transfer, 2015, 89: 817-828.
|
7 |
章旺, 卢晓剑, 许国良, 等. 一种两管径式脉动热管的流动与传热特性[J]. 航空动力学报, 2020, 35(11): 2371-2377.
|
|
ZHANG Wang, LU Xiaojian, XU Guoliang, et al. Flow and heat transfer characteristics of a two-diameter pulsating heat pipe[J]. Journal of Aerospace Power, 2020, 35(11): 2371-2377.
|
8 |
JI Y L, XU C, MA H B, et al. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface[J]. Journal of Heat Transfer, 2013, 135(7): 074504.
|
9 |
HAO T T, MA X H, LAN Z, et al. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 72: 50-65.
|
10 |
于慧文, 崔文宇, 郝婷婷, 等. 梯度润湿表面脉动热管传热性能的研究[J]. 化工进展, 2020, 39(11): 4375-4383.
|
|
YU Huiwen, CUI Wenyu, HAO Tingting, et al. Heat transfer performance of wettability gradient surface oscillating heat pipe[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4375-4383.
|
11 |
PATEL V M, GAURAV, MEHTA H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577.
|
12 |
ZHU Y, CUI X Y, HAN H, et al. The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures[J]. International Journal of Heat and Mass Transfer, 2014, 77: 834-842.
|
13 |
王迅, 肖冲, 李月月. 甲醇、丙酮及其二元混合工质脉动热管的启动特性[J]. 化工进展, 2016, 35(9): 2678-2684.
|
|
WANG Xun, XIAO Chong, LI Yueyue. Experimental study on the start-up characteristic of pulsating heat pipe with methanol/acetone and binary mixed working fluids[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2678-2684.
|
14 |
SHI S Y, CUI X Y, HAN H, et al. A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures[J]. Applied Thermal Engineering, 2016, 102: 1219-1227.
|
15 |
张超, 徐荣吉, 陈静妍, 等. 非共沸不互溶混合工质脉动热管启动特性分析[J]. 化工进展, 2019, 38(12): 5279-5286.
|
|
ZHANG Chao, XU Rongji, CHEN Jingyan, et al. Analysis of start-up characteristics of pulsating heat pipe with zeotropic immiscible mixtures[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5279-5286.
|
16 |
LIANG Q Q, HAO T T, WANG K, et al. Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. International Communications in Heat and Mass Transfer, 2018, 94: 1-13.
|
17 |
MA H B, WILSON C, BORGMEYER B, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe[J]. Applied Physics Letters, 2006, 88(14): 143116.
|
18 |
QU J, WU H Y, CHENG P. Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids[J]. International Communications in Heat and Mass Transfer, 2010, 37(2): 111-115.
|
19 |
MA K Q, LIU J. Nano liquid-metal fluid as ultimate coolant[J]. Physics Letters A, 2007, 361(3): 252-256.
|
20 |
KHOSHMANESH K, TANG S Y, ZHU J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6): 974-993.
|
21 |
曹春蕾, 何孝天, 马骁婧, 等. 液态金属软表面池沸腾传热的实验研究[J]. 物理学报, 2021, 70(13): 134703.
|
|
CAO C L, HE X T, MA X J, et al. Enhanced pool boiling heat transfer on soft liquid metal surface[J]. Acta Physica Sinica., 2021, 70(13): 134703.
|
22 |
HAO T T, MA H B, MA X H. Experimental investigation of oscillating heat pipe with hybrid fluids of liquid metal and water[J]. Journal of Heat Transfer, 2019, 141(7): 071802.
|
23 |
YU Y, WANG Q, YI L T, et al. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets[J]. Advanced Engineering Materials, 2014, 16(2): 255-262.
|
24 |
YANG L X, ZHAO X, XU S, et al. Oxide transformation and break-up of liquid metal in boiling solutions[J]. Science China Technological Sciences, 2020, 63(2): 289-296.
|
25 |
REN L, ZHUANG J C, CASILLAS G, et al. Nanodroplets for stretchable superconducting circuits[J]. Advanced Functional Materials, 2016, 26(44): 8111-8118.
|
26 |
CHEN S, DING Y J, ZHANG Q L, et al. Controllable dispersion and Reunion of liquid metal droplets[J]. Science China Materials, 2019, 62(3): 407-415.
|
27 |
GAO Y X, WANG L, LI H Y, et al. Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade[J]. Frontiers in Energy, 2014, 8(1): 49-61.
|
28 |
LIU T Y, SEN P, KIM C J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2012, 21(2): 443-450.
|
29 |
FAGHRI A, ZHANG Y W. Introduction to transport phenomena[M]//Transport Phenomena in Multiphase Systems. Amsterdam: Elsevier, 2006: 1-106.
|
30 |
武丽艳, 尚贞锋, 赵鸿喜. 电导法测定水溶性表面活性剂临界胶束浓度实验的改进[J]. 实验技术与管理, 2006, 23(2): 29-30.
|
|
WU Liyan, SHANG Zhenfeng, ZHAO Hongxi. Improving the experiment of measuring water-solubility surface-active agent’s critical micelle concentration by the conductive method[J]. Experimental Technology and Management, 2006, 23(2): 29-30.
|
31 |
CHENG P, MA H B. A mathematical model of an oscillating heat pipe[J]. Heat Transfer Engineering, 2011, 32(11/12): 1037-1046.
|