化工进展 ›› 2022, Vol. 41 ›› Issue (1): 286-299.DOI: 10.16085/j.issn.1000-6613.2021-0213
收稿日期:
2021-01-29
修回日期:
2021-04-22
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
张超灿
作者简介:
刘畅(1996—),女,硕士研究生,研究方向为相变蓄冷材料。E-mail: 基金资助:
LIU Chang(), CHEN Yanjun, ZHANG Chaocan()
Received:
2021-01-29
Revised:
2021-04-22
Online:
2022-01-05
Published:
2022-01-24
Contact:
ZHANG Chaocan
摘要:
相变材料(PCM)具有较高的储能密度,有利于能源的储存和高效利用。对于低温相变材料,其应用从相变温度为0℃至室温的空调和建筑等领域到零下的工业制冷和食品、药物等的运输储藏,非常广泛。本文从水溶液相变材料体系和非水相变材料体系两方面对冷链用相变材料进行了系统介绍,并从过冷、长期稳定性和导热等角度综述了近年关于冷链用相变材料的研究。指出对于水溶液相变材料体系存在的严重过冷及盐-水体系较强的金属腐蚀性,可通过使用合适的成核剂、改善相变材料对成核剂的浸润性、避免纳米粒子团聚及用不锈钢或聚合物材料封装等方法改善;对于非水相变材料体系,可通过引入高导热的纳米粒子和支撑材料,微胶囊化PCM等方法来解决有机物热导率较低的问题。关于纳米粒子的聚沉以及引入支撑材料和微胶囊化PCM导致的大量潜热损失问题,指出改善纳米粒子和支撑材料与PCM的亲和性是值得尝试的方向。
中图分类号:
刘畅, 陈艳军, 张超灿. 用于冷链的低温相变材料的研究进展[J]. 化工进展, 2022, 41(1): 286-299.
LIU Chang, CHEN Yanjun, ZHANG Chaocan. Low temperature phase change materials for subzero applications[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 286-299.
44 | SHEN T T, LI S L, PENG H, et al. Experimental study and thermodynamic modeling of solid-liquid equilibrium of binary systems: dodecane-tetradedcane and tridecane-pentadecane for cryogenic thermal energy storage[J]. Fluid Phase Equilibria, 2019, 493: 109-119. |
45 | 应铁进, 苏党, 白家玮. 用于非冷冻低温区运输的复合有机物相变蓄冷剂[J]. 农业机械学报, 2017, 48(8): 309-314. |
YING T J, SU D, BAI J W. Organic phase change compound materials for non-freezing cold chain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 309-314. | |
46 | LIU Y, CHEN Y H. Preparation and properties of lauryl alcohol-caprylic acid eutectics/activated charcoal composites as shape-stabilized phase change materials for cold energy storage[J]. Materials Science, 2020, 26(3): 300-307. |
47 | PÉREZ-MASIÁ R, LÓPEZ-RUBIO A, LAGARÓN J M. Development of zein-based heat-management structures for smart food packaging[J]. Food Hydrocolloids, 2013, 30(1): 182-191. |
48 | SELMA Y, KORAY S, ÖZGÜL G, et al. New binary alkane mixtures as PCMs for cooling applications[C]//11th International Conference on Thermal Energy Storage for Energy Efficiency and Sustainability, 2009: 14-17. |
1 | DU K, CALAUTIT J, WANG Z H, et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied Energy, 2018, 220: 242-273. |
2 | PANDEY A K, HOSSAIN M S, TYAGI V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323. |
3 | MUNYALO J M, ZHANG X L. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: a review[J]. Journal of Molecular Liquids, 2018, 265: 77-87. |
49 | GUNASEKARA S N, KUMOVA S, CHIU J N, et al. Experimental phase diagram of the dodecane-tridecane system as phase change material in cold storage[J]. International Journal of Refrigeration, 2017, 82: 130-140. |
50 | PENG H, ZHANG D, LING X, et al. n-Alkanes phase change materials and their microencapsulation for thermal energy storage: a critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293. |
4 | TARIQ S L, ALI H M, AKRAM M A, et al. Nanoparticles enhanced phase change materials (NePCMs)—A recent review[J]. Applied Thermal Engineering, 2020, 176: 115305. |
5 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
51 | 张妮. 复合相变蓄热材料的制备、相变动力学研究及在建筑材料中的应用[D]. 广州: 华南理工大学, 2012. |
ZHANG N. The preparation and dynamics research of composite phase change thermal storage materials and its application in building materials[D]. Guangzhou: South China University of Technology, 2012. | |
6 | SIDIK N A C, KEAN T H, CHOW H K, et al. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: a review[J]. International Communications in Heat and Mass Transfer, 2018, 94: 85-95. |
7 | PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
8 | MOHAMED S A, Al-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. |
9 | 顾庆军, 费华, 王林雅, 等. 脂肪酸相变储能材料热性能研究进展[J]. 化工进展, 2019, 38(6): 2825-2834. |
GU Q J, FEI H, WANG L Y, et al. Research progress on thermal properties of fatty acid phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2825-2834. | |
10 | LI G, HWANG Y H, RADERMACHER R, et al. Review of cold storage materials for subzero applications[J]. Energy, 2013, 51: 1-17. |
11 | KOUSKSOU T, JAMIL A, ZERAOULI Y. Enthalpy and apparent specific heat capacity of the binary solution during the melting process: DSC modeling[J]. Thermochimica Acta, 2012, 541: 31-41. |
12 | COFRÉ-TOLEDO J, VASCO D A, ISAZA-ROLDÁN C A, et al. Evaluation of an integrated household refrigerator evaporator with two eutectic phase-change materials[J]. International Journal of Refrigeration, 2018, 93: 29-37. |
13 | ORÓ E, BARRENECHE C, FARID M M, et al. Experimental study on the selection of phase change materials for low temperature applications[J]. Renewable Energy, 2013, 57: 130-136. |
14 | ORÓ E, MIRÓ L, FARID M M, et al. Improving thermal performance of freezers using phase change materials[J]. International Journal of Refrigeration, 2012, 35(4): 984-991. |
15 | LIU M, SAMAN W, BRUNO F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material[J]. Applied Energy, 2012, 92: 336-342. |
16 | 陶文博, 谢如鹤. 有机相变蓄冷材料的研究进展[J]. 制冷学报, 2016, 37(1): 52-59. |
TAO W B, XIE R H. Research and development of organic phase change materials for cool thermal energy storage[J]. Journal of Refrigeration, 2016, 37(1): 52-59. | |
17 | 唐娟. 新型低温相变蓄冷材料的热物性及应用研究[D]. 重庆: 重庆大学, 2007. |
TANG J. Thermal properties and application research of new low temperature phase change materials[D]. Chongqing: Chongqing University, 2007. | |
18 | CONG L, SHE X H, LENG G H, et al. Formulation and characterisation of ternary salt based solutions as phase change materials for cold chain applications[J]. Energy Procedia, 2019, 158: 5103-5108. |
19 | 班超方, 卢立新, 潘嘹. 冷冻型复合相变蓄冷材料的制备与性能评价[J]. 化工新型材料, 2019, 47(5): 218-221. |
BAN C F, LU L X, PAN L. Preparation and performance evaluation of freeze type composite phase change material[J]. New Chemical Materials, 2019, 47(5): 218-221. | |
20 | 陈文朴, 章学来, 黄艳, 等. 甲酸钠低温相变材料的研制及其在蓄冷箱中的应用[J]. 制冷学报, 2017, 38(1): 68-72. |
CHEN W P, ZHANG X L, HUANG Y, et al. Sodium formate as low temperature phase change material in cold storage insulation box[J]. Journal of Refrigeration, 2017, 38(1): 68-72. | |
21 | 丁军丹. 低温共晶盐蓄冷研究[D]. 南京: 南京理工大学, 2017. |
DING J D. The research of low-temperature eutectic salt[D]. Nanjing: Nanjing University of Science and Technology, 2017. | |
22 | HE Q B, WANG S F, TONG M W, et al. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage[J]. Energy Conversion and Management, 2012, 64: 199-205. |
23 | 傅一波, 王家俊, 王冬梅. 复合相变蓄冷剂性能研究[J]. 化工新型材料, 2017, 45(10): 235-237. |
FU Y B, WANG J J, WANG D M. Study on the performance of composite phase change coolant[J]. New Chemical Materials, 2017, 45(10): 235-237. | |
24 | 刘方方, 刘欣伟, 张紫恒, 等. 果蔬保鲜用相变蓄冷剂的研制及性能研究[J]. 河北科技大学学报, 2018, 39(6): 540-545. |
LIU F F, LIU X W, ZHANG Z H, et al. Preparation and properties study of phase change materials for fruits and vegetables preservation[J]. Journal of Hebei University of Science and Technology, 2018, 39(6): 540-545. | |
25 | LU W, LIU G Z, XING X H, et al. Investigation on ternary salt-water solutions as phase change materials for cold storage[J]. Energy Procedia, 2019, 158: 5020-5025. |
26 | 章学来, 王迎辉, 纪珺, 等. 山梨酸钾/氯化钾复合相变材料制备及热物性分析[J]. 农业工程学报, 2018, 34(18): 277-283. |
ZHANG X L, WANG Y H, JI J, et al. Preparation and thermal performance analysis of C5H7COOK/KCl composite phase change material[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 277-283. | |
27 | 黄艳, 章学来. 冷链物流用复合蓄冷材料的研究[J]. 制冷技术, 2016, 36(2): 12-15. |
HUANG Y, ZHANG X L. Research of composite cool storage materials for cold chain logistics[J]. Chinese Journal of Refrigeration Technology, 2016, 36(2): 12-15. | |
28 | HÄGG C. Ice slurry as secondary fluid in refrigeration systems: fundamentals and applications in supermarkets[D]. Stockholm: KTH Royal Institute of Technology, 2005. |
29 | 应铁进, 朱冰清, 戚晓丽, 等. 用于农产品保鲜的有机物水溶液相变蓄冷剂[J]. 农业机械学报, 2015, 46(2): 208-212, 207. |
YING T J, ZHU B Q, QI X L, et al. Development of organics solution phase change materials for preservation of agricultural products[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 208-212, 207. | |
30 | 王益聪, 武卫东, 张兵. 山梨醇水溶液过冷度影响因素研究[J]. 制冷技术, 2018, 38(1): 26-31. |
WANG Y C, WU W D, ZHANG B. Study on influencing factors of supercooling degree of sorbitol aqueous solution[J]. Chinese Journal of Refrigeration Technology, 2018, 38(1): 26-31. | |
31 | ZHAO Y J, LI Z N, UTAKA Y, et al. Adhesion characteristics of ice in urea aqueous solution for efficient slurry formation in cold storage[J]. International Journal of Refrigeration, 2019, 100: 335-342. |
32 | 刘晨敏. 复合相变蓄冷材料研究进展及在冷链物流中的应用[J]. 应用化工, 2020(7): 1861-1865. |
LIU C M. Research progress on composite phase change cold storage materials and its application in cold chain logistics[J]. Applied Chemical Industry, 2020(7): 1861-1865. | |
33 | YANG Y, YAN H Y, SHEN H Y. Development of a low temperature phase transforming composed material for cool storage[J]. Journal of Superconductivity and Novel Magnetism, 2010, 23(6): 1115-1117. |
34 | 戚晓丽, 朱冰清, 牟望舒, 等. 用于冷链运输的复合相变蓄冷剂主储能剂研制[J]. 中国食品学报, 2015, 15(10): 86-90. |
QI X L, ZHU B Q, MOU W S, et al. Development of main storage agent of composite phase change coolant for cold chain transportation[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(10): 86-90. | |
35 | 傅一波, 王冬梅, 朱宏. 低温相变储能材料研究进展及其应用[J]. 材料导报, 2016, 30(S2): 222-226. |
FU Y B, WANG D M, ZHU H. Review on low temperature phase change materials and its application[J]. Materials Review, 2016, 30(S2): 222-226. | |
36 | 贾蒲悦, 武卫东, 王益聪, 等. 新型复合低温相变蓄冷材料的研制及热物性优化[J]. 化工学报, 2019, 70(7): 2758-2765. |
JIA P R, WU W D, WANG Y C, et al. Preparation and thermophysical property optimization of a new composite phase change material for cold storage[J]. CIESC Journal, 2019, 70(7): 2758-2765. | |
37 | 李靖, 谢如鹤, 刘广海, 等. 冷藏运输用新型低温相变材料及装备的研制[J]. 制冷学报, 2018, 39(4): 32-37. |
LI J, XIE R H, LIU G H, et al. Development of new low-temperature phase change material and equipment used in refrigerated transportation[J]. Journal of Refrigeration, 2018, 39(4): 32-37. | |
38 | SARIER N, ONDER E. Organic phase change materials and their textile applications: an overview[J]. Thermochimica Acta, 2012, 540: 7-60. |
39 | PALLAKA M R, UNRUH D K, SIMON S L. Melting behavior of n-alkanes in anodic aluminum oxide (AAO) nanopores using flash differential scanning calorimetry[J]. Thermochimica Acta, 2018, 663: 157-164. |
40 | SONG Y L, ZHANG N, JING Y G, et al. Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage[J]. Energy, 2019, 189: 116175. |
41 | WU W X, ZHANG G Q, KE X F, et al. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J]. Energy Conversion and Management, 2015, 101: 278-284. |
52 | 张正飞, 秦紫依, 李勇, 等. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619. |
ZHANG Z F, QIN Z Y, LI Y, et al. Progress in supercooling and suppression methods of phase change materials[J]. Materials Reports, 2019, 33(21): 3613-3619. | |
53 | DANNEMAND M, JOHANSEN J B, FURBO S. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite[J]. Solar Energy Materials and Solar Cells, 2016, 145: 287-295. |
54 | CUI W, JIA L S, CHEN Y, et al. Supercooling of water controlled by nanoparticles and ultrasound[J]. Nanoscale Research Letters, 2018, 13(1): 145. |
55 | 崔卫. 限域空间内相变材料凝固过冷及强化成核手段的研究[D]. 广州: 广东工业大学, 2019. |
CUI W. Investigation on solidification behavior of phase change materials in confined geometry and nucleation enhancement technology[D]. Guangzhou: Guangdong University of Technology, 2019. | |
56 | ZHOU G B, ZHU M C, XIANG Y T. Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit[J]. Renewable Energy, 2018, 126: 537-544. |
57 | JIA L S, CUI W, CHEN Y, et al. Effect of ultrasonic power on super-cooling of TiO2 nanoparticle suspension[J]. International Journal of Heat and Mass Transfer, 2018, 120: 909-913. |
58 | LIU Y D, LIU Y M, HU P F, et al. The effects of graphene oxide nanosheets and ultrasonic oscillation on the supercooling and nucleation behavior of nanofluids PCMs[J]. Microfluidics and Nanofluidics, 2015, 18(1): 81-89. |
59 | 高志新, 郝保同, 刘宝林, 等. 纳米微粒对乙二醇溶液过冷度的影响[J]. 低温工程, 2010(3): 52-55. |
GAO Z X, HAO B T, LIU B L, et al. Effects of HA nanoparticles on subcooling of EG solutions[J]. Cryogenics, 2010(3): 52-55. | |
60 | LIU Y D, WANG J Q, SU C J, et al. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids[J]. Applied Thermal Engineering, 2017, 115: 1226-1236. |
61 | 唐临利, 许海峰, 郝保同, 等. 纳米微粒对多元醇水溶液过冷度和水合性质的影响[J]. 低温与超导, 2012, 40(8): 60-63. |
TANG X L, XU H F, HAO B T, et al. Effect of nanoparticles on supercooling and hydration properties of polyalcohols solutions[J]. Cryogenics & Superconductivity, 2012, 40(8): 60-63. | |
62 | TENG T P, YU S P, HSIAO T C, et al. Study on the phase change characteristics of carbon-based nanofluids[J]. Journal of Nanomaterials, 2018, 2018: 8230120. |
63 | 赵丹峰, 刘忠宝, 史慧新, 等. 无霜冰箱相变蓄冷材料及蓄冷无霜冰箱的实验研究[J]. 制冷与空调, 2017, 31(1): 1-8. |
ZHAO D F, LIU Z B, SHI H X, et al. The research of phase change materials used in household frost-free refrigerator[J]. Refrigeration & Air Conditioning, 2017, 31(1): 1-8. | |
64 | MUTHOKA M J, ZHANG X L, XU X F. Study on thermophysical properties of nanofluid based composite phase change material for low temperature application[J]. Energy Procedia, 2017, 142: 3313-3319. |
42 | SU W G, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. |
43 | 杨天润, 孙锲, WENNERSTEN Ronald, 等. 相变蓄冷材料的研究进展[J]. 工程热物理学报, 2018, 39(3): 567-573. |
YANG T R, SUN Q, WENNERSTEN R, et al. Review of phase change materials for cold thermal energy storage[J]. Journal of Engineering Thermophysics, 2018, 39(3): 567-573. | |
65 | MO S P, ZHU K D, YIN T, et al. Phase change characteristics of ethylene glycol solution-based nanofluids for subzero thermal energy storage[J]. International Journal of Energy Research, 2017, 41(1): 81-91. |
66 | SZE J Y, MU C Z, ROMAGNOLI A, et al. Non-eutectic phase change materials for cold thermal energy storage[J]. Energy Procedia, 2017, 143: 656-661. |
67 | LI X, ZHOU Y, NIAN H E, et al. Preparation and thermal energy storage studies of CH3COONa·3H2O-KCl composites salt system with enhanced phase change performance[J]. Applied Thermal Engineering, 2016, 102: 708-715. |
68 | ZHU F Y, ZHOU H X, ZHOU Y Q, et al. Phase change performance assessment of salt mixtures for thermal energy storage material[J]. International Journal of Energy Research, 2017, 41(13): 1855-1866. |
69 | WU T, XIE N, NIU J Y, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes(MWCNTs)[J]. International Journal of Refrigeration, 2020, 113: 136-144. |
70 | LIU Z B, ZHAO D F, WANG Q H, et al. Performance study on air-cooled household refrigerator with cold storage phase change materials[J]. International Journal of Refrigeration, 2017, 79: 130-142. |
71 | 戴君, 卢立新, 丘晓琳. 冷冻产品用无机盐相变蓄冷材料的制备及性能研究[J]. 化工新型材料, 2018, 46(6): 231-234. |
DAI J, LU L X, QIU X L. Preparation and performance of inorganic salt phase change material for frozen product[J]. New Chemical Materials, 2018, 46(6): 231-234. | |
72 | LEE S, PARK S. An experimental investigation of thermal characteristics of phase change material applied to improve the isothermal operation of a refrigerator[J]. Energies, 2018, 11(8): 2017. |
73 | LIANG L, CHEN X. Preparation and thermal properties of eutectic hydrate salt phase change thermal energy storage material[J]. International Journal of Photoenergy, 2018, 2018: 6432047. |
74 | 贾蒲悦, 武卫东, 王益聪. 新型0℃相变蓄冷材料制备及蓄冷特性[J]. 化工进展, 2019, 38(6): 2862-2869. |
JIA P R, WU W D, WANG Y C. Preparation of 0℃ phase change material and its cold storage performance in cold-chain logistics[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2862-2869. | |
75 | JI J, CHEN Y, WANG Y G, et al. Fabrication and characterization of phase change nanofluid with high thermophysical properties for thermal energy storage[J]. Journal of Molecular Liquids, 2019, 284: 23-28. |
76 | 纪珺, 陈跃, 章学来, 等. 甘露醇水溶液低温储能相变材料的制备及热物性[J]. 化工进展, 2018, 37(3): 1111-1117. |
JI J, CHEN Y, ZHANG X L, et al. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1111-1117. | |
77 | FERRER G, SOLÉ A, BARRENECHE C, et al. Corrosion of metal containers for use in PCM energy storage[J]. Renewable Energy, 2015, 76: 465-469. |
78 | JAYA K D, SHINDE A. Step by step methodology for the assessment of metal corrosion rate with PCMs suitable for low temperature heat storage applications[J]. Materials Today: Proceedings, 2017, 4(9): 10039-10042. |
79 | ORÓ E, MIRÓ L, BARRENECHE C, et al. Corrosion of metal and polymer containers for use in PCM cold storage[J]. Applied Energy, 2013, 109: 449-453. |
80 | MORENO P, MIRÓ L, SOLÉ A, et al. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications[J]. Applied Energy, 2014, 125: 238-245. |
81 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. |
CHEN Y, JIANG Q H, XIN J W, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. | |
82 | YU J, LI H, KONG L, et al. Effects of nanofilled particle forms and dispersion modes on properties of carbon-based energy storage composites[J]. Advances in Polymer Technology, 2020, 2020: 6865497. |
83 | 杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464-472. |
YANG L, YAO Y, ZHANG D D, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7(5): 464-472. | |
84 | KHAN Z, KHAN Z, GHAFOOR A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility[J]. Energy Conversion and Management, 2016, 115: 132-158. |
85 | PRAMOTHRAJ M, SANTOSH R, SWAMINATHAN M R, et al. Study of effect of Al and Cu microparticles dispersed in D-mannitol PCM for effective solar thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 895-904. |
86 | SAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67. |
87 | SADEGH S S, AGHABABAEI A, MOHAMMADI O, et al. An experimental investigation into the melting of phase change material using Fe3O4 magnetic nanoparticles under magnetic field[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(1): 381-392. |
88 | LIANG W D, WANG L N, ZHU H Y, et al. Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 180: 158-167. |
89 | MARTÍN M, VILLALBA A, FERNÁNDEZ A I, et al. Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: lab-scale characterization[J]. Energy and Buildings, 2019, 192: 75-83. |
90 | EBADI S, TASNIM S H, ALIABADI A A, et al. Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification[J]. Energy Conversion and Management, 2018, 166: 241-259. |
91 | PRADO J I, LUGO L. Enhancing the thermal performance of a stearate phase change material with graphene nanoplatelets and MgO nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39108-39117. |
92 | RADHAKRISHNAN N, THOMAS S, SOBHAN C B. Characterization of thermophysical properties of nano-enhanced organic phase change materials using T-history method[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(5): 2471-2484. |
93 | HARISH S, OREJON D, TAKATA Y, et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied Thermal Engineering, 2015, 80: 205-211. |
94 | AMIN M, PUTRA N, KOSASIH E A, et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J]. Applied Thermal Engineering, 2017, 112: 273-280. |
95 | SRINIVASAN S, DIALLO M S, SAHA S K, et al. Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane[J]. International Journal of Heat and Mass Transfer, 2017, 114: 318-323. |
96 | DONG B B, LI S L, ZHANG X W, et al. Synthesis and characterization of nanoalumina and CNTs-reinforced microcapsules with n-dodecane as a phase change material for cold energy storage[J]. Energy & Fuels, 2020, 34(6): 7700-7708. |
97 | KAZEMI M, KIANIFAR A, NIAZMAND H. Nanoparticle loading effect on the performance of the paraffin thermal energy storage material for building applications[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(6): 3769-3775. |
98 | XIE B S, LI C C, CHEN J, et al. Exfoliated 2D hexagonal boron nitride nanosheet stabilized stearic acid as composite phase change materials for thermal energy storage[J]. Solar Energy, 2020, 204: 624-634. |
99 | YADAV A, BARMAN B, KUMAR V, et al. A review on thermophysical properties of nanoparticle-enhanced phase change materials for thermal energy storage[C]//Recent Trends in Materials and Devices. Springer, 2017: 37-47. |
100 | TONG X, LI N Q, ZENG M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422. |
101 | UMAIR M M, ZHANG Y, IQBAL K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review[J]. Applied Energy, 2019, 235: 846-873. |
102 | HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76. |
103 | ZHU X, WANG Q, KANG S G, et al. Coal-based ultrathin-wall graphitic porous carbon for high-performance form-stable phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2020, 395: 125112. |
104 | WANG X L, LI B, QU Z G, et al. Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119853. |
105 | HAN L, JIA X L, LI Z M, et al. Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability[J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 13026-13035. |
106 | HUANG Y T, XIE C P, LI C, et al. Rheological behaviour and aggregation kinetics of EG/water based MCNT nano-suspension for sub-zero temperature cold storage[J]. Energy Procedia, 2019, 158: 4846-4851. |
107 | XIE N, LI Z P, GAO X N, et al. Preparation and performance of modified expanded graphite/eutectic salt composite phase change cold storage material[J]. International Journal of Refrigeration, 2020, 110: 178-186. |
108 | KARAIPEKLI A, BIÇER A, SARI A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes[J]. Energy Conversion and Management, 2017, 134: 373-381. |
109 | BASHIRI R A, MONTAZER M. Shape-stable thermo-responsive nano Fe3O4/fatty acids/PET composite phase-change material for thermal energy management and saving applications[J]. Applied Energy, 2020, 262: 114501. |
110 | QURESHI Z A, ALI H M, KHUSHNOOD S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review[J]. International Journal of Heat and Mass Transfer, 2018, 127: 838-856. |
111 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
LI Z,LI B R,CHEN H Z,et al. State-of-the-art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
112 | NIE B J, PALACIOS A, ZOU B Y, et al. Review on phase change materials for cold thermal energy storage applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110340. |
113 | JIANG Z N, YANG W B, HE F F, et al. Microencapsulated paraffin phase-change material with calcium carbonate shell for thermal energy storage and solar-thermal conversion[J]. Langmuir, 2018, 34(47): 14254-14264. |
114 | WANG T Y, WANG S F, LUO R L, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119. |
115 | FU W W, LIANG X H, XIE H Z, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. |
116 | KUMAR G N, AL-AIFAN B, PARAMESHWARAN R, et al. Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125698. |
[1] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[2] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[3] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[4] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[5] | 吴伟雄, 谢世伟, 马瑞鑫, 刘吉臻, 汪双凤, 饶中浩. 固-液/气-液多相耦合热控技术应用研究进展[J]. 化工进展, 2023, 42(3): 1143-1154. |
[6] | 赵西坡, 卞武勋, 冉宝清, 刘进超, 尹少鼎, 孙义明. 石蜡固-固相变材料的制备及性能[J]. 化工进展, 2023, 42(2): 897-906. |
[7] | 郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871. |
[8] | 孙义明, 冉宝清, 卞武勋, 刘进超, 尹少鼎, 赵西坡. 聚丙烯蜡固-固相变材料的制备与工艺优化[J]. 化工进展, 2023, 42(1): 336-345. |
[9] | 白金刚, 苑正己, 刘雨, 张义师, 吕喜风. 癸酸-石蜡/石墨烯气凝胶定形相变材料的制备及热物性分析[J]. 化工进展, 2022, 41(8): 4441-4448. |
[10] | 张春伟, 李山峰, 郭永朝, 张学军, 江龙. 定热流边界下重力作用PCM熔化过程规律[J]. 化工进展, 2022, 41(8): 4129-4139. |
[11] | 郭制安, 隋智慧, 李亚萍, 徐逸坤, 孙芳, 赵欣. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659. |
[12] | 朱孟帅, 王子龙, 孙向昕, 周翔. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211. |
[13] | 张瑞瑞, 王宁, 高志, 于晓慧, 杨宾. 赤藻糖醇/甘露醇过冷特性分析[J]. 化工进展, 2022, 41(6): 2959-2966. |
[14] | 陆少锋, 崔杉杉, 师文钊, 李苏松, 谢艳, 杨乾诚. 交联水性聚氨酯固-固相变材料的制备及性能[J]. 化工进展, 2022, 41(5): 2574-2581. |
[15] | 罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |