化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1777-1796.DOI: 10.16085/j.issn.1000-6613.2020-2267
凌祥1(), 宋丹阳1, 陈晓轶1,2, 张志浩1, 靳晓刚1, 王燕1
收稿日期:
2020-11-13
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
凌祥
作者简介:
凌祥(1967—),男,教授,博士生导师,研究方向为储热技术。E-mail:LING Xiang1(), SONG Danyang1, CHEN Xiaoyi1,2, ZHANG Zhihao1, JIN Xiaogang1, WANG Yan1
Received:
2020-11-13
Online:
2021-04-05
Published:
2021-04-14
Contact:
LING Xiang
摘要:
近年来,由于可持续发展的需要,太阳能等清洁可再生能源的大规模应用被提上日程。为解决太阳能受天气、昼夜等因素影响造成的不能持续稳定供能的问题,许多学者提出将储能系统整合至太阳能发电中,将太阳能热量以某种方式存储起来,需要时释放,从而使系统能持续运转。其中,热化学储能由于能量密度高,材料能够长期稳定储存与运输等优势,成为储能领域中新兴的研究热点。在众多的热化学储能材料中,基于CaCO3/CaO与Ca(OH)2/CaO体系的钙基热化学储能系统材料安全性高,成本较低且易于获得,十分具有发展潜力。本文对这两种钙基热化学储能体系的原理与材料进行了简单介绍,综述了该领域先进反应器设计与系统集成控制方面的国内外发展状况,探讨了目前研究面临的挑战与机遇,提出了钙基热化学储能技术的今后研究与发展方向的建议。
中图分类号:
凌祥, 宋丹阳, 陈晓轶, 张志浩, 靳晓刚, 王燕. 钙基热化学储能体系装备与系统研究进展[J]. 化工进展, 2021, 40(4): 1777-1796.
LING Xiang, SONG Danyang, CHEN Xiaoyi, ZHANG Zhihao, JIN Xiaogang, WANG Yan. Progress in equipment and systems for calcium-based thermochemical energy storage system[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1777-1796.
1 | 金红光, 宣益民, 何雅玲, 等. 工程热物理学科与能源可持续发展[J]. 中国科学: 技术科学, 2020, 50(10): 1245-1251. |
JIN Hongguang, XUAN Yimin, HE Yaling, et al. Engineering thermophysics and sustainable energy development[J]. Scientia Sinica Technologica, 2020, 50(10): 1245-1251. | |
2 | 上官小英, 常海青, 梅华强. 太阳能发电技术及其发展趋势和展望[J]. 能源与节能, 2019(3): 60-63. |
SHANGGUAN Xiaoying, CHANG Haiqing, MEI Huaqiang. Solar power generation technologies and their development trends and prospects[J]. Energy and Energy Conservation, 2019(3): 60-63. | |
3 | 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592. |
WU Yuting, REN Nan, MA Chongfang. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592. | |
4 | KHAN Mohammed Mumtaz A, IBRAHIM Nasiru I, MAHBUBUL I M, et al. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review[J]. Solar Energy, 2018, 166: 334-350. |
5 | 孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6): 577-584. |
SUN Feng, PENG Hao, LING Xiang. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology, 2015, 4(6): 577-584. | |
6 | 汪德良, 张纯, 杨玉, 等. 基于太阳能光热发电的热化学储能体系研究进展[J]. 热力发电, 2019, 48(7): 1-9. |
WANG Deliang, ZHANG Chun, YANG Yu, et al. Research progress of thermochemical energy storage system based on solar thermal power generation[J]. Thermal Power Generation, 2019, 48(7): 1-9. | |
7 | 赵梦娇, 王登辉, 惠世恩, 等. 利用氧化还原反应储能的储能介质研究进展[J]. 热力发电, 2020, 49(8): 19-28. |
ZHAO Mengjiao, WANG Denghui, HUI Shien, et al. Research progress of energy storage medium using redox reaction energy storage[J]. Thermal Power Generation, 2020, 49(8): 19-28. | |
8 | KUMAR Sanjay, KOJIMA Yoshitsugu, KAIN Vivekanand. Nano-engineered Mg-MgH2 system for solar thermal energy storage[J]. Solar Energy, 2017, 150: 532-537. |
9 | 蒋滨繁, 夏德宏, 安苛苛, 等. 基于CO2循环的低碳高效白云石煅烧新工艺[J]. 化工学报, 2020, 71(8): 3699-3709. |
JIANG Binfan, XIA Dehong, AN Keke, et al. Efficient low-carbon dolomite calcination process based on CO2 looping and recovering[J]. CIESC Journal, 2020, 71(8): 3699-3709. | |
10 | Laurie ANDRÉ, ABANADES Stéphane. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J]. Journal of Energy Storage, 2017, 13: 193-205. |
11 | HATADA Naoyuki, SHIZUME Kunihiko, Tetsuya UDA. Discovery of rapid and reversible water insertion in rare earth sulfates: a new process for thermochemical heat storage[J]. Advanced Materials, 2017, 29(28): 1606569. |
12 | 刘彦铄, 王新赫, 张军社, 等. 太阳能甲烷重整反应器研究进展[J]. 化工进展, 2019, 38(12): 5339-5350. |
LIU Yanshuo, WANG Xinhe, ZHANG Junshe, et al. Progress in solar methane reforming reactors[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5339-5350. | |
13 | CHEN Chen, LOVEGROVE Keith M, SEPULVEDA Abdon, et al. Design and optimization of an ammonia synthesis system for ammonia-based solar thermochemical energy storage[J]. Solar Energy, 2018, 159: 992-1002. |
14 | CHEN Xiaoyi, ZHANG Zhen, QI Chonggang, et al. State of the art on the high-temperature thermochemical energy storage systems[J]. Energy Conversion and Management, 2018, 177: 792-815. |
15 | Larissa FEDUNIK-HOFMAN, BAYON Alicia, HINKLEY James, et al. Friedman method kinetic analysis of CaO-based sorbent for high-temperature thermochemical energy storage[J]. Chemical Engineering Science, 2019, 200: 236-247. |
16 | 龙新峰, 吴娟. 热化学储能体系Ca(OH)2/CaO的分解动力学[J]. 华南理工大学学报(自然科学版), 2014, 42(10): 75-81. |
LONG Xinfeng, WU Juan. Thermal decomposition kinetics of thermochemical energy storage system Ca(OH)2/CaO[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(10): 75-81. | |
17 | 陈曈,张伟波,周宇昊,等. 分布式能源系统常用储能技术综述[J]. 能源与环保, 2019, 41(7): 138-142. |
CHEN Tong, ZHANG Weibo, ZHOU Yuhao, et al. Summary of energy storage technologies commonly used in distributed energy systems[J]. China Energy and Environmental Protection, 2019, 41(7): 138-142. | |
18 | ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al. The calcium-looping (CaCO3/CaO) process for thermochemical energy storage in concentrating solar power plants[J]. Renewable & Sustainable Energy Reviews, 2019, 113: 109252. |
19 | KHOSA Azhar Abbas, ZHAO C Y. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica[J]. Solar Energy, 2019, 188: 619-630. |
20 | SUN Hao, LI Yingjie, BIAN Zhiguo, et al. Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CaCO3 cycles[J]. Energy Conversion and Management, 2019, 197: 111885. |
21 | CHEN Xiaoyi, JIN Xiaogang, LIU Zhimin, et al. Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping[J]. Energy, 2018, 155: 128-138. |
22 | GUO Hongxia, FENG Jiaqi, ZHAO Yujun, et al. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 19: 165-176. |
23 | SUN Hao, LI Yingjie, YAN Xianyao, et al. Thermochemical energy storage performance of Al2O3/CeO2co-doped CaO-based material under high carbonation pressure[J]. Applied Energy, 2020, 263: 114650. |
24 | MA Xiaotong, LI Yingjie, DUAN Lunbo, et al. CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions[J]. Applied Energy, 2018, 225: 402-412. |
25 | HAN Rui, GAO Jihui, WEI Siyu, et al. High-performance CaO-based composites synthesized using a space-confined chemical vapor deposition strategy for thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110346. |
26 | HAN Rui, GAO Jihui, WEI Siyu, et al. Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage[J]. Applied Energy, 2018, 231: 412-422. |
27 | TENG Liang, XUAN Yimin, Yun DA, et al. Modified Ca-looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845. |
28 | Yun DA, XUAN Yimin, TENG Liang, et al. Calcium-based composites for direct solar-thermal conversion and thermochemical energy storage[J]. Chemical Engineering Journal, 2020, 382: 122815. |
29 | CARRILLO A J, GONZALEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials[J]. Chem. Rev., 2019, 119(7): 4777-4816. |
30 | YAN J, ZHAO C Y, XIA B Q, et al. The effect of dehydration temperatures on the performance of the CaO/Ca(OH)2 thermochemical heat storage system[J]. Energy, 2019, 186: 115837. |
31 | DAI Liu, LONG Xinfeng, LOU Bo, et al. Thermal cycling stability of thermochemical energy storage system Ca(OH)2/CaO[J]. Applied Thermal Engineering, 2018, 133: 261-268. |
32 | ROßKOPF C, HAAS M, FAIK A, et al. Improving powder bed properties for thermochemical storage by adding nanoparticles[J]. Energy Conversion and Management, 2014, 86: 93-98. |
33 | GOLLSCH M, AFFLERBACH S, ANGADI B V, et al. Investigation of calcium hydroxide powder for thermochemical storage modified with nanostructured flow agents[J]. Solar Energy, 2020, 201: 810-818. |
34 | YAN J, ZHAO C Y. First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping[J]. Chemical Engineering Science, 2014, 117: 293-300. |
35 | YAN J, ZHAO C Y. Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138: 86-92. |
36 | HUANG Caifeng, XU Min, HUAI Xiulan. Experimental investigation on thermodynamic and kinetic of calcium hydroxide dehydration with hexagonal boron nitride doping for thermochemical energy storage[J]. Chemical Engineering Science, 2019, 206: 518-526. |
37 | LI Yating, LI Mengtian, XU Zhibin, et al. Dehydration kinetics and thermodynamics of ZrO(NO3)2-doped Ca(OH)2 for chemical heat storage[J]. Chemical Engineering Journal, 2020, 399: 125841. |
38 | DURÁN-MARTÍN Jonatan D, SÁNCHEZ JIMENEZ Pedro E, VALVERDE J M, et al. Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage[J]. Journal of Advanced Research, 2020, 22: 67-76. |
39 | 刘一楠, 邓帅, 赵睿恺, 等. 新型太阳能辅助碳捕集技术进展综述与性能比较[J]. 化工进展, 2016, 35(12): 3848-3857. |
LIU Yinan, DENG Shuai, ZHAO Ruikai, et al. Progress overview and performance comparison of innovative solar-assisted carbon capture technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3848-3857. | |
40 | YUAN Yi, LI Yingjie, DUAN Lunbo, et al. CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture[J]. Energy Conversion and Management, 2018, 174: 8-19. |
41 | YAN J, ZHAO C Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175: 277-284. |
42 | TREGAMBI Claudio, SALATINO Piero, SOLIMENE Roberto, et al. An experimental characterization of calcium looping integrated with concentrated solar power[J]. Chemical Engineering Journal, 2018, 331: 794-802. |
43 | CRIADO Yolanda A, HUILLE Arthur, Sylvie ROUGÉ, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2017, 313: 1194-1205. |
44 | PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107: 605-616. |
45 | 于宏林, 于宏朋. 先进高活性石灰窑技术创新与应用[J]. 现代冶金, 2015, 43(5): 21-25. |
YU Honglin, YU Hongpeng. Innovation and application of advanced high activity lime kiln technology[J]. Modern Metallurgy, 2015, 43(5): 21-25. | |
46 | MEIER Anton, BONALDI Enrico, CELLA Gian Mario, et al. Solar chemical reactor technology for industrial production of lime[J]. Solar Energy, 2006, 80(10): 1355-1362. |
47 | MEIER Anton, BONALDI Enrico, CELLA Gian Mario, et al. Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime[J]. Energy, 2004, 29(5/6): 811-821. |
48 | NEISES M, TESCARI S, de OLIVEIRA L, et al. Solar-heated rotary kiln for thermochemical energy storage[J]. Solar Energy, 2012, 86(10): 3040-3048. |
49 | MOUMIN Gkiokchan, TESCARI Stefania, SUNDARRAJ Pradeepkumar, et al. Solar treatment of cohesive particles in a directly irradiated rotary kiln[J]. Solar Energy, 2019, 182: 480-490. |
50 | SCHMIDT Matthias, GUTIERREZ Andrea, LINDER Marc. Thermochemical energy storage with CaO/Ca(OH)2—Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor[J]. Applied Energy, 2017, 188: 672-681. |
51 | COSQUILLO MEJIA Aldo, AFFLERBACH Sandra, LINDER Marc, et al. Experimental analysis of encapsulated CaO/Ca(OH)2 granules as thermochemical storage in a novel moving bed reactor[J]. Applied Thermal Engineering, 2020, 169: 114961. |
52 | SCHMIDT Matthias, GOLLSCH Marie, GIGER Franz, et al. Development of a moving bed pilot plant for thermochemical energy storage with CaO/Ca(OH)2[J]. AIP Conference Proceedings, 2016. DOI: 10.1063/1.4949139. |
53 | SCHRADER Andrew J, Evan BUSH H, RANJAN Devesh, et al. Aluminum-doped calcium manganite particles for solar thermochemical energy storage: reactor design, particle characterization, and heat and mass transfer modeling[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119461. |
54 | ESENCE Thibaut, BENOIT Hadrien, PONCIN Damien, et al. A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes[J]. Solar Energy, 2020, 196: 389-398. |
55 | SENCE Thibaut, GUILLOT Emmanuel, TESSONNEAUD Michael, et al. Solar calcination at pilot scale in a continuous flow multistage horizontal fluidized bed[J]. Solar Energy, 2020, 207: 367-378. |
56 | ABANADES Stéphane, Laurie ANDRÉ. Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination[J]. Applied Energy, 2018, 212: 1310-1320. |
57 | PAN Z H, ZHAO C Y. Gas-solid thermochemical heat storage reactors for high-temperature applications[J]. Energy, 2017, 130: 155-173. |
58 | EDWARDS Susan E B, Vlatko MATERIĆ. Calcium looping in solar power generation plants[J]. Solar Energy, 2012, 86(9): 2494-2503. |
59 | CHACARTEGUI R, ALOVISIO A, ORTIZ C, et al. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle[J]. Applied Energy, 2016, 173: 589-605. |
60 | ALOVISIO A, CHACARTEGUI R, ORTIZ C, et al. Optimizing the CSP-calcium looping integration for thermochemical energy storage[J]. Energy Conversion and Management, 2017, 136: 85-98. |
61 | ORTIZ C, ROMANO M C, VALVERDE J M, et al. Process integration of calcium-looping thermochemical energy storage system in concentrating solar power plants[J]. Energy, 2018, 155: 535-551. |
62 | PELAY Ugo, LUO Lingai, FAN Yilin, et al. Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: energy and exergy analyses[J]. Energy, 2019, 167: 498-510. |
63 | CHEN Xiaoyi, JIN Xiaogang, LING Xiang, et al. Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle[J]. Energy, 2020, 209: 118452. |
64 | CANNONE Salvatore F, STENDARDO Stefano, LANZINI Andrea. Solar-powered rankine cycle assisted by an innovative calcium looping process as an energy storage system[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6977-6993. |
65 | TESIO U, GUELPA E, ORTIZ C, et al. Optimized synthesis/design of the carbonator side for direct integration of thermochemical energy storage in small size Concentrated Solar Power[J]. Energy Conversion And Management, 2019, 4: 100025. |
66 | ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al. Carbonation of limestone derived cao for thermochemical energy storage: from kinetics to process integration in concentrating solar plants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6404-6417. |
67 | FERNÁNDEZ R, ORTIZ C, CHACARTEGUI R, et al. Dispatchability of solar photovoltaics from thermochemical energy storage[J]. Energy Conversion and Management, 2019, 191: 237-246. |
68 | BRAVO R, ORTIZ C, CHACARTEGUI R, et al. Hybrid solar power plant with thermochemical energy storage: a multi-objective operational optimisation[J]. Energy Conversion and Management, 2020, 205: 112421. |
69 | CHEN Xiaoyi, ZHANG Dong, WANG Yan, et al. The role of sensible heat in a concentrated solar power plant with thermochemical energy storage[J]. Energy Conversion and Management, 2019, 190: 42-53. |
70 | CHEN Xiaoyi, JIN Xiaogang, LING Xiang, et al. Exergy analysis of concentrated solar power plants with thermochemical energy storage based on calcium looping[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7928-7941. |
71 | 崔士军. 塔式太阳能热发电系统智能控制技术的研究[D]. 济南: 济南大学, 2012. |
CUI Shijun. Application research of tower solar energy intelligent control system[D]. Jinan: University of Jinan, 2012. | |
72 | 李雨欣. 3kW碟式光热发电系统的智能控制[D]. 西安: 西安科技大学, 2019. |
LI Yuxin. 3kW Intelligent control of disc photothermal power generation system[D]. Xi’an: Xi’an University of Science and Technology, 2019. | |
73 | GHRITLAHRE Harish Kumar, PRASAD Radha Krishna. Application of ANN technique to predict the performance of solar collector systems—A review[J]. Renewable & Sustainable Energy Reviews, 2018, 84: 75-88. |
74 | Nadia AL-ROUSAN, Nor Ashidi Mat ISA, DESA Mohd Khairunaz Mat. Advances in solar photovoltaic tracking systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2548-2569. |
75 | ROSELYN J. Preetha, CHANDRAN C. Pranav, NITHYA C,et al. Design and implementation of fuzzy logic based modified real-reactive power control of inverter for low voltage ride through enhancement in grid connected solar PV system[J]. Control Engineering Practice, 2020, 101: 104494. |
76 | HUANG Conghui, PAN Hengyau, LIN Kuanchen. Development of intelligent fuzzy controller for a two-axis solar tracking system[J]. Applied Sciences, 2016, 6(5): 130. |
77 | MUNANGA Prominent, CHINGUWA Simon, NYEMBA Wilson R. Design for manufacture and assembly of an intelligent single axis solar tracking system[J]. Procedia CIRP, 2020, 91: 571-576. |
78 | Nadia AL-ROUSAN, Nor Ashidi MAT ISA, DESA Mohd Khairunaz MAT. Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system[J]. Journal of King Saud University: Engineering Sciences, 2020, 32(7): 459-469. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[5] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[6] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[7] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[8] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[12] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[13] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[14] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[15] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |