化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4397-4405.DOI: 10.16085/j.issn.1000-6613.2020-1892
王亮才(), 陈宇, 赵曼淇, 吴杰龙, 王哲, 马欢欢, 周建斌()
收稿日期:
2020-09-17
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
周建斌
作者简介:
王亮才(1991—),男,博士研究生,从事生物质热解与炭材料研究。E-mail:基金资助:
WANG Liangcai(), CHEN Yu, ZHAO Manqi, WU Jielong, WANG Zhe, MA Huanhuan, ZHOU Jianbin()
Received:
2020-09-17
Online:
2021-08-05
Published:
2021-08-12
Contact:
ZHOU Jianbin
摘要:
采用K2CO3溶液提取稻壳气化炭中的SiO2(RHC-SiO2),再以RHC-SiO2/晶体SiO2(C-SiO2)/两种SiO2等比例混合(RC-SiO2)为摩擦组元,电解铜粉为基体,石墨和二硫化钼为固体润滑剂,制备铜基摩擦材料,并考察RHC-SiO2/C-SiO2/RC-SiO2的添加对铜基摩擦材料密度、表面硬度及摩擦系数的影响,通过打磨及腐蚀制备金相,观察材料表面的物质分布状态,结果表明,RHC-SiO2的比表面积为135.532m2/g,其5nm左右的中孔非常发达且在950℃烧结4h后,其表面收缩团聚,出现烧结颈,有结晶化的趋势;随着RHC-SiO2/C-SiO2/RC-SiO2添加量的增大,铜基摩擦材料的密度逐渐降低,但RHC-SiO2使其降低的幅度更显著;当RHC-SiO2添加量为10%时,其表面硬度为64.6HV,较无摩擦组元的基础材料显著提高(43.33%);C-SiO2在材料中钉扎摩擦副,阻止摩擦运动以及提高摩擦系数而RHC-SiO2起钉扎作用。本研究以期为RHC-SiO2在铜基摩擦材料中的应用提供理论依据。
中图分类号:
王亮才, 陈宇, 赵曼淇, 吴杰龙, 王哲, 马欢欢, 周建斌. 稻壳基SiO2的提取及其含量对铜基摩擦材料性能的影响[J]. 化工进展, 2021, 40(8): 4397-4405.
WANG Liangcai, CHEN Yu, ZHAO Manqi, WU Jielong, WANG Zhe, MA Huanhuan, ZHOU Jianbin. Effect of extraction of rice husk-based SiO2 and it’s content on performance of copper-based friction materials[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4397-4405.
样品 | 质量分数/% | 总质量 /g | ||||
---|---|---|---|---|---|---|
电解铜粉 | 石墨 | MoS2 | C-SiO2 | RHC-SiO2 | ||
1 | 89.00 | 10.00 | 1.00 | 0 | 0 | 42.00 |
2 | 87.00 | 10.00 | 1.00 | 2.00 | 0 | 42.00 |
3 | 85.00 | 10.00 | 1.00 | 4.00 | 0 | 42.00 |
4 | 83.00 | 10.00 | 1.00 | 6.00 | 0 | 42.00 |
5 | 81.00 | 10.00 | 1.00 | 8.00 | 0 | 42.00 |
6 | 79.00 | 10.00 | 1.00 | 10.00 | 0 | 42.00 |
7 | 87.00 | 10.00 | 1.00 | 0 | 2.00 | 42.00 |
8 | 85.00 | 10.00 | 1.00 | 0 | 4.00 | 42.00 |
9 | 83.00 | 10.00 | 1.00 | 0 | 6.00 | 42.00 |
10 | 81.00 | 10.00 | 1.00 | 0 | 8.00 | 42.00 |
11 | 79.00 | 10.00 | 1.00 | 0 | 10.00 | 42.00 |
12 | 87.00 | 10.00 | 1.00 | 1.00 | 1.00 | 42.00 |
13 | 85.00 | 10.00 | 1.00 | 2.00 | 2.00 | 42.00 |
14 | 83.00 | 10.00 | 1.00 | 3.00 | 3.00 | 42.00 |
15 | 81.00 | 10.00 | 1.00 | 4.00 | 4.00 | 42.00 |
16 | 79.00 | 10.00 | 1.00 | 5.00 | 5.00 | 42.00 |
表1 铜基摩擦材料成分配比
样品 | 质量分数/% | 总质量 /g | ||||
---|---|---|---|---|---|---|
电解铜粉 | 石墨 | MoS2 | C-SiO2 | RHC-SiO2 | ||
1 | 89.00 | 10.00 | 1.00 | 0 | 0 | 42.00 |
2 | 87.00 | 10.00 | 1.00 | 2.00 | 0 | 42.00 |
3 | 85.00 | 10.00 | 1.00 | 4.00 | 0 | 42.00 |
4 | 83.00 | 10.00 | 1.00 | 6.00 | 0 | 42.00 |
5 | 81.00 | 10.00 | 1.00 | 8.00 | 0 | 42.00 |
6 | 79.00 | 10.00 | 1.00 | 10.00 | 0 | 42.00 |
7 | 87.00 | 10.00 | 1.00 | 0 | 2.00 | 42.00 |
8 | 85.00 | 10.00 | 1.00 | 0 | 4.00 | 42.00 |
9 | 83.00 | 10.00 | 1.00 | 0 | 6.00 | 42.00 |
10 | 81.00 | 10.00 | 1.00 | 0 | 8.00 | 42.00 |
11 | 79.00 | 10.00 | 1.00 | 0 | 10.00 | 42.00 |
12 | 87.00 | 10.00 | 1.00 | 1.00 | 1.00 | 42.00 |
13 | 85.00 | 10.00 | 1.00 | 2.00 | 2.00 | 42.00 |
14 | 83.00 | 10.00 | 1.00 | 3.00 | 3.00 | 42.00 |
15 | 81.00 | 10.00 | 1.00 | 4.00 | 4.00 | 42.00 |
16 | 79.00 | 10.00 | 1.00 | 5.00 | 5.00 | 42.00 |
工业分析/% | 元素分析/% | 热值 /MJ·kg-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | N | C | H | S | O | ||
5.76 | 46.30 | 4.40 | 49.30 | 0.71 | 41.74 | 0.035 | 0.05 | 11.16 | 15.83 |
表2 稻壳气化炭的基础理化性质
工业分析/% | 元素分析/% | 热值 /MJ·kg-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | N | C | H | S | O | ||
5.76 | 46.30 | 4.40 | 49.30 | 0.71 | 41.74 | 0.035 | 0.05 | 11.16 | 15.83 |
1 | ZHANG Z L, HE W X, ZHENG J Z, et al. Rice husk ash-derived silica nanofluids: synthesis and stability study[J]. Nanoscale Research Letters, 2016, 11(1): 1-8. |
2 | LIM J S, ABDUL MANAN Z, WAN ALWI S R, et al. A review on utilisation of biomass from rice industry as a source of renewable energy[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3084-3094. |
3 | ISA K M, DAUD S, HAMIDIN N, et al. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM)[J]. Industrial Crops and Products, 2011, 33(2): 481-487. |
4 | CHEN D Y, ZHOU J B, ZHANG Q S. Effects of torrefaction on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS[J]. Energy & Fuels, 2014, 28(9): 5857-5863. |
5 | 李新. 稻壳生物反应堆在有机果蔬生产上的应用[J]. 农村科学实验, 2018(12): 55-56. |
LI Xin. Application of rice husk bioreactor in organic fruit and vegetable production[J]. Rural Scientific Eriment, 2018(12): 55-56. | |
6 | SEKAR S, AQUEEL AHMED A T, INAMDAR A I, et al. Activated carbon-decorated spherical silicon nanocrystal composites synchronously-derived from rice husks for anodic source of lithium-ion battery[J]. Nanomaterials, 2019, 9(7): E1055. |
7 | 闫立龙, 郝国馨, 刘玉, 等. 以稻壳为载体的SBR对农村生活污水去除效能分析[J]. 化工进展, 2014, 33(9): 2484-2488, 2494. |
YAN Lilong, HAO Guoxin, LIU Yu, et al. Analysis of removal efficiency of SBR on rural sewage with rice husk as carrier[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2484-2488, 2494. | |
8 | BAKAR M S ABU, TITILOYE J O. Catalytic pyrolysis of rice husk for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 362-368. |
9 | CHEN D Y, GAO A J, MA Z Q, et al. In-depth study of rice husk torrefaction: characterization of solid, liquid and gaseous products, oxygen migration and energy yield[J]. Bioresource Technology, 2018, 253: 148-153. |
10 | ZHANG H X, ZHAO X, DING X F, et al. A study on the consecutive preparation of D-xylose and pure superfine silica from rice husk[J]. Bioresource Technology, 2010, 101(4): 1263-1267. |
11 | WEI Z C, WANG Z F, TAIT W R T, et al. Synthesis of green phosphors from highly active amorphous silica derived from rice husks[J]. Journal of Materials Science, 2018, 53(3): 1824-1832. |
12 | SHIBATA K, YAMAGUCHI T, URABE T, et al. Experimental study on microscopic wear mechanism of copper/carbon/rice bran ceramics composites[J]. Wear, 2012, 294/295: 270-276. |
13 | ZHOU Y, HIRAO K, YAMAGUCHI T, et al. Preparation and tribological properties of SiC/rice bran carbon composite ceramics[J]. Journal of Materials Research, 2005, 20(12): 3439-3448. |
14 | DUGARJAV T, YAMAGUCHI T, SHIBATA K, et al. Friction and wear properties of rice husk ceramics under dry condition[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 85-88. |
15 | MATSUO Y, TSURUDA T, KUMAGAI S. Sliding properties of rice husk-derived carbon/silica composite[J]. Journal of the Society of Materials Engineering for Resources of Japan, 2012, 24(1/2): 31-35. |
16 | MOON S, LIN A X, KIM B H, et al. Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles[J]. Journal of Non-Crystalline Solids, 2008, 354(2-9): 602-606. |
17 | XU P P, YAO Y C, SHEN S C, et al. Preparation of supermacroporous composite cryogel embedded with SiO2 nanoparticles[J]. Chinese Journal of Chemical Engineering, 2010, 18(4): 667-671. |
18 | 陈宇卓, 欧忠文, 刘朝辉. 甲基三甲氧基硅烷改性水玻璃基自疏水SiO2气凝胶的制备[J]. 硅酸盐学报, 2018, 46(4): 511-517. |
CHEN Yuzhuo, Zhongwen OU, LIU Zhaohui. Preparation and properties of self-hydrophobic silica aerogel based on methltrimethoxysilane/water glass[J]. Journal of the Chinese Ceramic Society, 2018, 46(4): 511-517. | |
19 | 曾会会, 仪桂云, 邢宝林, 等. SiO2/还原氧化石墨烯复合材料的简易制备及对罗丹明B的吸附[J]. 化工进展, 2018, 37(3): 1084-1091. |
ZENG Huihui, YI Guiyun, XING Baolin, et al. Facile synthesis of SiO2/RGO composite for the adsorption of Rhodamine B[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1084-1091. | |
20 | VINODH R, BHAGIYALAKSHMI M, HEMALATHA P, et al. Homopiperazine grafted mesoporous silicas from rice husk ash for CO2 adsorption[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4639-4648. |
21 | TERZIOĞLU P, YUCEL S, RABAGAH T M, et al. Characterization of wheat hull and wheat hull ash as a potential source of SiO2[J]. BioResources, 2013, 8(3): 4406-4420. |
22 | REHMAN M S U, UMER M A, RASHID N, et al. Sono-assisted sulfuric acid process for economical recovery of fermentable sugars and mesoporous pure silica from rice straw[J]. Industrial Crops and Products, 2013, 49: 705-711. |
23 | CHANDRA PAUL S, MBEWE P, KONG S, et al. Agricultural solid waste as source of supplementary cementitious materials in developing countries[J]. Materials, 2019, 12(7): 1112. |
24 | MA Z Q, ZHANG Y M, ZHANG Q S, et al. Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach[J]. Energy, 2012, 46(1): 140-147. |
25 | WANG H L, WU D J, ZHOU J B. Gasified rice husk based RHAC/NiCo2S4 composite for high performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2019, 811: 152073. |
26 | RONGCHAPO W, SOPHIPHUN O, RINTRAMEE K, et al. Paraquat adsorption on porous materials synthesized from rice husk silica[J]. Water Science and Technology, 2013, 68(4): 863-869. |
27 | MOHANRAJ K, KANNAN S, BARATHAN S, et al. Preparation and characterization of nano SiO2 from corn cob ash by precipitation method[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2012, 6(3): 394-397. |
28 | WANG L, GUO Y, CHEN Y X, et al. Enhanced mechanical and water absorption properties of rice husk-derived nano-SiO2 reinforced PHBV composites[J]. Polymers, 2018, 10(9): 1022. |
29 | 刘胜臣. 杏壳活性炭的制备工艺研究[D]. 杨凌: 西北农林科技大学, 2012. |
LIU Shengchen. Study preparation process of activated carbon from corpus amygdaloideum[D]. Yangling: Northwest A & F University, 2012. | |
30 | 马欢欢, 周建斌, 王刘江, 等. 秸秆炭基肥料挤压造粒成型优化及主要性能[J]. 农业工程学报, 2014, 30(5): 270-276. |
MA Huanhuan, ZHOU Jianbin, WANG Liujiang, et al. Straw carbon based fertilizer granulation molding optimization and its main properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 270-276. | |
31 | 顾洁, 周建斌, 马欢欢, 等. 油茶壳热解产物特性及热解炭制备活性炭工艺优化[J]. 农业工程学报, 2015, 31(21): 233-239. |
GU Jie, ZHOU Jianbin, MA Huanhuan, et al. Characteristics of camellia shell pyrolysis products and optimization of preparation parameters of activated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 233-239. | |
32 | 刘长涛, 侯建伟, 索全义, 等. 玉米秸秆生物质炭基肥的结构与性质表征[J]. 土壤, 2019, 51(3): 465-469. |
LIU Changtao, HOU Jianwei, SUO Quanyi, et al. Structure and performance characterization of maize straw biochar-based fertilizer[J]. Soils, 2019, 51(3): 465-469. | |
33 | 乔志刚. 不同生物质炭基肥对不同作物生长、产量及氮肥利用率的影响研究[D]. 南京: 南京农业大学, 2013. |
QIAO Zhigang. Effects of different biochar fertilizer on growth, yield and nitrogen utilizing rate of different crops[D]. Nanjing: Nanjing Agricultural University, 2013. | |
34 | 李新华. 粮食加工学[M]. 北京: 中国农业出版社, 2002: 9-35. |
LI Xinhua. Food processing[M]. Beijing: Chemical Agriculture Press, 2002: 9-35. | |
35 | 潘明珠, 周晓燕, 陈成. 纳米二氧化硅在稻秸上的形态分布及制备工艺[J]. 农业工程学报, 2012, 28(2): 250-255. |
PAN Mingzhu, ZHOU Xiaoyan, CHEN Cheng. Preparation and morphology properties of nano-silicon dioxide from rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 250-255. | |
36 | 方放, 周建斌, 杨继亮. 稻壳炭提取SiO2及制备活性炭联产工艺[J]. 农业工程学报, 2012, 28(23): 184-191. |
FANG Fang, ZHOU Jianbin, YANG Jiliang. Poly-generation of activated carbon and silica from rice husk charcoal[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 184-191. | |
37 | 王亮才, 朱正祥, 马欢欢, 等. 紫茎泽兰杆热解气化及其产物研究[J]. 林业工程学报, 2018, 3(6): 98-103. |
WANG Liangcai, ZHU Zhengxiang, MA Huanhuan, et al. Pyrolysis, gasification and its products of Eupatorium adenophorum[J]. Journal of Forestry Engineering, 2018, 3(6): 98-103. | |
38 | NICHOLAS A, HUSSEIN M, ZAINAL Z, et al. Palm kernel shell activated carbon as an inorganic framework for shape-stabilized phase change material[J]. Nanomaterials, 2018, 8(9): 689. |
39 | WANG L C, WU Y S, LIU S S, et al. MnO2-loaded activated carbon and its adsorption of formaldehyde[J]. BioResources, 2019, 14(3): 7193-7212. |
40 | HUANG J Y, WEI S B, ZHANG L X, et al. Fabricating the superhydrophobic nickel and improving its antifriction performance by the laser surface texturing[J]. Materials, 2019, 12(7): 1155. |
41 | ONO S, KIKEGAWA T. Titanium boride equation of state determined by in situ X-ray diffraction[J]. Heliyon, 2016, 2(12): e00220. |
42 | XIAO P, HUANG J H, DONG T, et al. Room-temperature fabricated thin-film transistors based on compounds with lanthanum and main family element boron[J]. Molecules, 2018, 23(6): E1373. |
43 | LIAN G F, ZHANG H, ZHANG Y, et al. Computational and experimental investigation of micro-hardness and wear resistance of Ni-based alloy and TiC composite coating obtained by laser cladding[J]. Materials, 2019, 12(5): E793. |
44 | TJONG S C, LAU K C. Tribological behaviour of SiC particle-reinforced copper matrix composites[J]. Materials Letters, 2000, 43(5/6): 274-280. |
45 | 李连洲. 氧化物的制备方法对液相烧结碳化硅材料机械性能的影响[J]. 耐火与石灰, 2020, 45(1): 37-40. |
LI Lianzhou. Effect of preparation methods of oxides on mechanical properties of liquid-phase sintered silicon carbide[J]. Refractories & Lime, 2020, 45(1): 37-40. | |
46 | 金狄. 过渡金属碳化物、氧化物在能量转换和储存领域的第一性原理研究[D]. 长春: 吉林大学, 2020. |
JIN Di. First principles studies of transition metal carbides and oxides for energy conversion and storage[D]. Changchun: Jilin University, 2020. | |
47 | LATOSIŃSKA J, ŻYGADŁO M. The application of sewage sludge as an expanding agent in the production of lightweight expanded clay aggregate mass[J]. Environmental Technology, 2011, 32(13): 1471-1478. |
48 | YANG B, XIAO J Z, WANG C. Effects of WO3 electrode microstructure on NO2-sensing properties for a potentiometric sensor[J]. Royal Society Open Science, 2019, 6(7): 190526. |
49 | MENG F B, HUANG J. Evolution mechanism of photonically sintered nano-silver conductive patterns[J]. Nanomaterials, 2019, 9(2): 258. |
50 | REN Z Y, YANG Y, LIN Y X, et al. Tribological properties of molybdenum disulfide and helical carbon nanotube modified epoxy resin[J]. Materials, 2019, 12(6): E903. |
[1] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[2] | 王尚彬, 欧红香, 薛洪来, 曹海珍, 王钧奇, 毕海普. 黄原胶和纳米二氧化硅对无氟泡沫性能的影响[J]. 化工进展, 2023, 42(9): 4856-4862. |
[3] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[4] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[5] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[6] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[7] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[8] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[9] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[10] | 路思佳, 李晓良, 赵会艳, 田志娟, 郑兴. 电化学对循环冷却水系统碳钢的结垢与腐蚀影响[J]. 化工进展, 2023, 42(4): 2142-2150. |
[11] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[12] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[13] | 阳清正, 张太亮, 刘从胜, 白毅, 程鑫, 郑存川. 双子型咪唑啉季铵盐缓蚀剂的制备及缓蚀机理[J]. 化工进展, 2023, 42(10): 5436-5444. |
[14] | 潘月磊, 程旭东, 闫明远, 何盼, 张和平. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309. |
[15] | 郭振雪, 于海斌, 张国辉, 张景成, 卢雁飞, 何艳贞, 孙彦民, 韩恩山. Si改性对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2022, 41(S1): 210-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |