化工进展 ›› 2021, Vol. 40 ›› Issue (2): 736-746.DOI: 10.16085/j.issn.1000-6613.2020-1286
李艳美1,2(), 田纯焱1(), 柏雪源2(), 易维明2, 袁巧霞3, 李志合1, 付鹏1, 张玉春1, 李治宇1
收稿日期:
2020-07-08
修回日期:
2020-09-12
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
田纯焱,柏雪源
作者简介:
李艳美(1988—),女,博士研究生,研究方向为生物质能源与材料。E-mail:基金资助:
Yanmei LI1,2(), Chunyan TIAN1(), Xueyuan BAI2(), Weiming YI2, Qiaoxia YUAN3, Zhihe LI1, Peng FU1, Yuchun ZHANG1, Zhiyu LI1
Received:
2020-07-08
Revised:
2020-09-12
Online:
2021-02-05
Published:
2021-02-09
Contact:
Chunyan TIAN,Xueyuan BAI
摘要:
生物质水热转化技术具有原料适应性好、成本低、转化效率高的特点,使其具有未来工业化生产生物原油和化学品替代化石燃料的巨大潜力。本文综述了目前生物质水热转化连续式系统的研发进展,指出目前研发系统的主要环节部分仅水热反应器基本实现了连续化反应,而其他环节如原料进料、产物分离尚未实现连续化运行。分析表明,未来的生产模式要求具备效率高、能耗低、环保和节能等特点,才能实现商业化。本文提出了一套面向未来的完全连续式生物质水热转化系统模式。该系统可以实现包括生物质原料预处理、喂料/泵送、水热反应及产物分离各环节能完全连续化运行。同时,系统在产物分离过程中通过对关键水相产物反复循环回用进行热交换,实现更高的热效率实现节能;其次,通过水相产物的热量回收和水相产物循环回用实现过程水排放更加环保。通过分析实现此系统所需关键部件的研发进展,对该系统面对未来的商业化可能性提供了一种启示。
中图分类号:
李艳美, 田纯焱, 柏雪源, 易维明, 袁巧霞, 李志合, 付鹏, 张玉春, 李治宇. 完全连续式生物质水热转化系统的研发趋势[J]. 化工进展, 2021, 40(2): 736-746.
Yanmei LI, Chunyan TIAN, Xueyuan BAI, Weiming YI, Qiaoxia YUAN, Zhihe LI, Peng FU, Yuchun ZHANG, Zhiyu LI. Research and development trend on the complete continuous system for hydrothermal conversion of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 736-746.
1 | KRUSE Andrea, FUNKE Axel, TITIRICI Maria Magdalena. Hydrothermal conversion of biomass to fuels and energetic materials[J]. Current Opinion in Chemical Biology, 2013, 17(3): 515-521. |
2 | 王伟, 闫秀懿, 张磊, 等. 木质纤维素生物质水热液化的研究进展[J]. 化工进展, 2016, 35(2): 453-462. |
WANG Wei, YAN Xiuyi, ZHANG Lei, et al. Research progress of hydrothermal liquefaction of lignocellulosic biomass[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 453-462. | |
3 | 高英, 石韬, 汪君, 等. 生物质水热技术研究现状及发展[J]. 可再生能源, 2011, 29(4): 77-83. |
GAO Ying, SHI Tao, WANG Jun, et al. Research status and development of hydrothermal technology for biomass[J]. Renewable Energy Resources, 2011, 29(4): 77-83. | |
4 | GUPTA Ram B, DEMIRBAS Ayhan. Gasoline, diesel and ethanol biofuels from grasses and plants[M]. New York: Cambridge University Press, 2010: 158-160. |
5 | CROCKER Marker. Thermochemical conversion of biomass to liquid fuels and chemicals[M]. Cambridge, UK: RSC Publishing, 2010. |
6 | KUMAR Mayank, OYEDUN Adetoyese Olajire, KUMAR Amit. A review on the current status of various hydrothermal technologies on biomass feedstock[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1742-1770. |
7 | PHUTTARO Chettaphong, SAWATDEENARUNAT Chayanon, SURENDRA K C, et al. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield[J]. Bioresource Technology, 2019, 284: 128-138. |
8 | WILK Malgorzata, MAGDZIARZ Aneta, JAYARAMAN Kandasamy, et al. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study[J]. Biomass and Bioenergy, 2019, 120: 166-175. |
9 | MATHANKER Ankit, PUDASAINEE Deepak, KUMAR Amit, et al. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: parametric study and products characterization[J]. Fuel, 2020, 271: 117534. |
10 | GÖKKAYA Dilek Selvi, SERT Murat, Mehmet SAĞLAM, et al. Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L.)[J]. The Journal of Supercritical Fluids, 2020, 162: 104846. |
11 | COSTANZO William, JENA Umakanta, HILTEN Roger, et al. Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams[J]. Algal Research, 2015, 12: 377-387. |
12 | Jongkeun LEE, Kwanyong LEE, SOHN Donghwan, et al. Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel[J]. Energy, 2018, 153:913-920. |
13 | 曲磊, 崔翔, 杨海平,等. 微藻水热液化制取生物油的研究进展[J]. 化工进展, 2018, 37(8): 2962-2969. |
QU Lei, CUI Xiang, YANG Haiping, et al. Review on the preparation of bio-oil by microalgae hyrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2962-2969. | |
14 | ONWUDILI Jude A, LEA-LANGTON Amanda R, ROSS Andrew B, et al. Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling[J]. Bioresource Technology, 2013, 127: 72-80. |
15 | 段培高, 许玉平. 水热法处理浮萍生物质制取生物油[J]. 化工进展, 2012, 31(S1): 522. |
DUAN Peigao, XU Yuping. Hydrothermal treatment of duckweed biomass to produce bio-oil[J]. Chemical Industry and Engineering Progress, 2012, 31(S1): 522. | |
16 | PATEL Bhavish, GUO Miao, IZADPANAH Arash, et al. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing[J]. Bioresource Technology, 2016, 199: 288-299. |
17 | 田纯焱. 富营养化藻的特性与水热液化成油的研究[D]. 北京: 中国农业大学, 2015. |
TIAN Chunyan. Study on characteristics of harvested algae from eutrophication and biocrude oil production through hydrothermal liquefaction[D]. Beijing: China Agricultural University, 2015. | |
18 | TANUSHREE Paul, ARINDAM Sinharoy, KANNAN Pakshirajan, et al. Lipid-rich bacterial biomass production using refinery wastewater in a bubble column bioreactor for bio-oil conversion by hydrothermal liquefaction[J]. Journal of Water Process Engineering, 2020, 37:101462. |
19 | BOHUTSKYI Pavlo, PHAN Duc, SPIERLING Ruth E, et al. Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion[J]. Science of the Total Environment, 2019, 653: 1377-1394. |
20 | 袁松, 黄艳琴, 刘华财, 等. 低温水热预处理对高蛋白小球藻N分布和藻渣热解特性的影响[J]. 燃料化学学报, 2019, 47(1): 39-52. |
YUAN Song, HUANG Yanqin, LIU Huacai, et al. Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp. on N distribution and thermal degradation of solid residue[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 39-52. | |
21 | GRETA Sztancs, LILLA Juhasz, BALAZS Jozsef, et al. Co-hydrothermal gasification of Chlorella vulgaris and hydrochar: the effects of waste-to-solid biofuel production and blending concentration on biogas generation[J]. Bioresource Technology, 2020, 302: 122793. |
22 | NGAMSIRISOMSAKUL Marika, REUNGSANG Alissara, LIAO Qiang, et al. Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis[J]. Renewable Energy, 2019, 141: 482-492. |
23 | ZHENG Cui, FENG Cheng, Jarvis JACQUELINE M, et al. Roles of co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae[J]. Bioresource Technology, 2020, 310: 123454. |
24 | TOOR Saqib Sohail, ROSENDAHL Lasse, RUDOLF Andreas. Hydrothermal liquefaction of biomass: a review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
25 | ELLIOTT Douglas C, BILLER Patrick, ROSS Andrew B, et al. Hydrothermal liquefaction of biomass: developments from batch to continuous process[J]. Bioresource Technology, 2015, 178: 147-156. |
26 | ITOH Shinji, SUZUKI Akira, NAKAMURA Tadashi, et al. Production of heavy oil from sewage sludge by direct thermochemical liquefaction[J]. Desalination, 1994, 98(1/2/3): 127-133. |
27 | TOOR Saqib Sohail. Modelling and optimization of catliq® liquid biofuel process[D]. Denmark: Aalborg University, 2010. |
28 | FENG Wei, KOOI Hedzer J VAN DER, DE SWAAN ARONS Jakob. Phase equilibria for biomass conversion processes in subcritical and supercritical water[J]. Chemical Engineering Journal, 2004, 98(1/2): 105-113. |
29 | FENG Wei, KOOI Hedzer J VAN DER, DE SWAAN ARONS Jakob. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis[J]. Chemical Engineering and Processing, 2004, 43(1/2): 1459-1467. |
30 | BEHRENDT Frank, NEUBAUER York, OEVERMANN Michael, et al. Direct liquefaction of biomass[J]. Chemical Engineering & Technology, 2008, 31 (5): 667-677. |
31 | OCFEMIA K S, ZHANG Y, FUNK T. Hydrothermal processing of swine manure to oil using a continuous reactor system: effects of operating parameters on oil yield and quality[J]. Transactions of the ASABE, 2006, 49(6): 1897-1904. |
32 | LARSEN Tommy. CHP plant based on catalytic liquid conversion process[R]. Catliq Final Report, 2005. |
33 | ELLIOTT Douglas C, HART Todd R, SCHMIDT Andrew J, et al. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor[J]. Algal Research, 2013, 2(4): 445-454. |
34 | JAZRAWI Christopher, BILLER Patrick, ROSS Andrew B, et al. Pilot plant testing of continuous hydrothermal liquefaction of microalgae[J]. Algal Research, 2013, 2(3): 268-277. |
35 | LIU Xiaowei, SAYDAH Benjamin, ERANKI Pragnya, et al. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction[J]. Bioresource Technology, 2013, 148: 163-171. |
36 | BILLER Patrick, SHARMA Brajendra K, KUNWAR Bidhya, et al. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae[J]. Fuel, 2015, 159: 197-205. |
37 | PATEL Bhavish, HELLGARDT Klaus. Hydrothermal upgrading of algae paste in a continuous flow reactor[J]. Bioresource Technology, 2015, 191: 460-468. |
38 | MØRUP Anders Juul, BECKER Jacob, CHRISTENSEN Per Sigaard, et al. Construction and commissioning of a continuous reactor for hydrothermal liquefaction[J]. Industrial & Engineering Chemistry Research, 2015, 54(22): 5935-5947. |
39 | PEDERSEN T H, GRIGORAS I F, HOFFMANN J, et al. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation[J]. Applied Energy, 2016, 162: 1034-1041. |
40 | JENSEN Claus Uhrenholt, GUERRERO Rodriguez Julie Katerine, KARATZOS Sergios, et al. Fundamentals of hydrofaction™: renewable crude oil from woody biomass[J]. Biomass Conversion and Biorefinery, 2017, 2: 445-454. |
41 | CASTELLO Daniele, PEDERSEN Thomas Helmer, ROSENDAHL Lasse Aistrup. Continuous hydrothermal liquefaction of biomass: a critical review[J]. Energies, 2018, 11(11): 3165-3199. |
42 | JENSEN Claus Uhrenholt, ROSENDAHL Lasse A, Göran OLOFSSON. Impact of nitrogenous alkaline agent on continuous HTL of lignocellulosic biomass and biocrude upgrading[J]. Fuel Processing Technology, 2017, 159: 376-385. |
43 | ANASTASAKIS Konstantinos, BILLER Patrick, MADSEN René B, et al. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation[J]. Energies, 2018, 11(10): 2695-2717. |
44 | KRISTIANTO Ivan, LIMARTA Susan Olivia, PARK Young Kwon, et al. Hydrothermal liquefaction of concentrated acid hydrolysis lignin in a bench-scale continuous stirred tank reactor[J]. Energy Fuels, 2019, 33(7): 6421-6428. |
45 | TOOR Saqib Sohail, ROSENDAHL Lasse, NIELSEN Mads Pagh, et al. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production[J]. Biomass and Bioenergy, 2012, 36(1): 327-332. |
46 | ELLIOTT Douglas C, SCHMIDT Andrew J, HART Todd R, et al. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace[J]. Biomass Conversion and Biorefinery, 2017, 7: 455-465. |
47 | HE Yaya, LIANG Xiao, JAZRAWI Christopher, et al. Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents[J]. Algal Research, 2016, 17: 185-195. |
48 | ELLIOTT Douglas C, HART Todd R, NEUENSCHWANDER Gary G, et al. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 207-215. |
49 | GUO Bingfeng, WALTER Vincent, HORNUNG Urselet al. Hydrothermal liquefaction of Chlorella vulgaris and Nannochloropsis gaditana in a continuous stirred tank reactor and hydrotreating of biocrude by nickel catalysts[J]. Fuel Processing Technology, 2019, 191: 168-180. |
50 | WAGNER Jonathan L, LE Chien D, TING Valeska P, et al. Design and operation of an inexpensive, laboratory-scale, continuous hydrothermal liquefaction reactor for the conversion of microalgae produced during wastewater treatment[J]. Fuel Processing Technology, 2017, 165: 102–111. |
51 | BARREIRO Diego López, GOMEZ Blanca Ríos, HORNUNG Urselet al. Hydrothermal liquefaction of microalgae in a continuous stirred tank reactor[J]. Energy Fuels, 2015, 29(9/10): 6422-6432. |
52 | CHENG Feng, JARVIS Jacqueline M, YU Jiuling, et al. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor[J]. Bioresource Technology, 2019, 294: 122184-122223. |
53 | TRAN Khanh Quang. Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass—The need to develop a plug-flow reactor[J]. Bioresource Technology, 2016, 213: 327-332. |
54 | BEIMS Ramon Filipe, HU Yulin, SHUI Hengfu, et al. Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations[J]. Biomass and Bioenergy, 2020, 135: 105510-105523. |
55 | WYMAN Charles E. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals[M]. West Sussex, UK:John Wiley & Sons, Ltd., 2013. |
56 | DÃRÃBAN Iulia Maria, ROSENDAHL Lasse Aistrup, PEDERSEN Thomas Helmer, et al. Pretreatment methods to obtain pumpable high solid loading wood-water slurries for continuous hydrothermal liquefaction systems[J]. Biomass and Bioenergy, 2015, 81: 437-443. |
57 | 郑传江, 李永阳, 刘宋辉. 畜禽高温化制机: CN90219590.5[P]. 1991-05-15. |
ZHENG Chunjiang, LIU Yongyang, LIU Songhui. Livestock high temperature machine: CN90219590.5[P]. 1991-05-15. | |
58 | 余强, 庄新姝, 袁振宏, 等. 木质纤维素类生物质高温液态水预处理技术[J]. 化工进展, 2010, 29(11): 2177-2182. |
YU Qiang, ZHUANG Xinzhu, YUAN Zhenhong, et al. Pretreatment of lignocellulosic biomass with liquid hot water[J]. Chemical Industry and Engineering Process, 2010, 29(11): 2177-2182. | |
59 | BERGLIN E J, ENDERLIN C W, SCHMIDT A J. Review and assessment of commercial vendors/options for feeding and pumping biomass slurries for hydrothermal liquefaction[R]. US: PNNL, 2012. |
60 | MØRUP Anders Juul, CHRISTENSEN Per Runge, AARUP David Friis, et al. Hydrothermal liquefaction of dried distillers grains with solubles: a reaction temperature study[J]. Energy Fuels, 2012, 26: 5944-5953. |
61 | JONES S, ZHU Y, ANDERSON D, et al. Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading[R]. United States: Pacific Northwest National Laboratory, 2014. |
62 | CHENG Feng, DOUX Travis Le, TREFZ Brain, et al. Modification of a pilot-scale continuous flow reactor for hydrothermal liquefaction of wet biomass[J]. MethodsX, 2019, 6: 2793-2806. |
63 | OCFEMIA K S, ZHANG Y, FUNK T. Hydrothermal processing of swine manure into oil using a continuous reactor system development and testing[J]. Transactions of the ASABE, 2006, 49(2): 533-541. |
64 | JOHANNSEN I, ADAMSEN A P S, KILSGAARD B S, et al. A method and apparatus for producing biofuel in an oscillating flow production line under supercritical fluid conditions: WO/2016/004958[P]. 2016-01-14. |
65 | 李龙. 三相卧螺离心机转鼓动静态分析及参数优化[D]. 兰州:天华化工机械及自动化研究设计院有限公司, 2014. |
LI Long. Static & dynamic finite element analysis and parameter optimization of three-phase decanter’s drum[D]. Lanzhou: Tianhua Institute of Chemical Machinery & Automation, 2014. | |
66 | 赵玉强. 三相卧螺离心机的原理及故障判断[J]. 科技信息, 2012(11): 152-152. |
ZHAO Yuqiang. Principle and fault judgment of three-phase decanter centrifuge[J]. Information Technology, 2012(11): 152-152. | |
67 | 袁冶, 王臣. 谈化工分馏塔工作原理及内件安装[J]. 中国石油和化工标准与质量, 2012, 32(4): 51. |
YUAN Zhi, WANG Chen. Talking about the working principle and internal parts installation of chemical fractionation tower[J]. China Petroleum and Chemical Industry Standards and Quality, 2012, 32(4): 51. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[3] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[4] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[5] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[6] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[7] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[8] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[9] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[10] | 王松松, 刘培乔, 陶长元, 王运东, 陈恩之, 苗迎彬, 赵风轩, 刘作华. 工业物联网技术在搅拌反应器领域的应用[J]. 化工进展, 2023, 42(7): 3331-3339. |
[11] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[12] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[13] | 张建伟, 许蕊, 张忠闯, 董鑫, 冯颖. 基于卷积神经网络的撞击流反应器浓度场混合特性[J]. 化工进展, 2023, 42(2): 658-668. |
[14] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
[15] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |