化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2784-2801.DOI: 10.16085/j.issn.1000-6613.2020-1274
收稿日期:
2020-07-06
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
岳长涛
作者简介:
孙艺蕾(1996—),女,硕士研究生,研究方向为高密度聚乙烯热解生产α-烯烃。E-mail:SUN Yilei(), MA Yue, LI Shuyuan, YUE Changtao()
Received:
2020-07-06
Online:
2021-05-06
Published:
2021-05-24
Contact:
YUE Changtao
摘要:
通过热解和催化热解技术将废塑料转化为高附加值产品是一种有前途的回收途径,可解决废塑料对环境的污染问题并促进环境的可持续化,这种方法同时具有经济效益和明显的环境优势,为塑料的回收行业确立了未来的发展趋势。本文以石蜡、轻质芳烃(BTX)、低碳烯烃和苯乙烯等产品为出发点,阐述了不同聚烯烃塑料的热解特性,详细介绍了温度和停留时间对产品分布和收率的影响,然后基于聚烯烃空间结构的差异,讨论了不同催化剂作用下的热解机理,并对催化剂的酸强度和孔结构等影响因素进行了着重分析,以改善产品选择性。此外,文章简述了聚氯乙烯脱氯的三类过程,即热解脱氯、催化热解脱氯和吸附脱氯。最后指出催化热解过程中催化剂成本高、重复使用活性低等潜在问题,今后的研究应致力于优化工艺路线、开发价格低廉的新型催化剂。
中图分类号:
孙艺蕾, 马跃, 李术元, 岳长涛. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2021, 40(5): 2784-2801.
SUN Yilei, MA Yue, LI Shuyuan, YUE Changtao. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2784-2801.
塑料名称 | 反应器类型 | 热解温度/℃ | 停留时间/s | 产物(质量分数)/% | |||
---|---|---|---|---|---|---|---|
蜡 | 轻质芳烃 | 低碳烯烃 | 苯乙烯 | ||||
HDPE[ LDPE[ HDPE[ HDPE[ PE/PP19] HDPE[ HDPE[ PP[ HDPE[ HDPE[ HDPE[ LLDPE[ PS[ | 锥形喷射床 流化床 流化床 流化床 锥形喷射床 流化砂床 流化床 流化床 流化床 流化床 锥形喷射床+多管 固定床 锥形喷射床 | 500~700 500~700 650 640~645 450 700~800 780 668~746 604~800 700~800 500、900~950 450、900 450~500 | — 15 0.8~1.0 0.82~0.99 — — 0.7~1.6 — — 0.7~2.27 0.016 1.3 — | 70~12 45.3~4.0 51.9~25.3 78.9~79.7 80/92 — 0.2~0 2.5~0 — 30~12 — — — | — — — — — 2.42~3.24 3.8~5.9 18~52 0.82~3.08 — — — 3.06~5.26 | 1.5~37 6.92~53.08 — — — 20.63~26.82 — 28~18.5 13.92~37.87 47.2~62.5 77~55 46.5 0.32~1.23 | — — — — — 0 1.7~0.7 0.8~2.8 — — — — 50.8~70.6 |
表1 聚烯烃塑料在不同操作条件下获得的产物分布
塑料名称 | 反应器类型 | 热解温度/℃ | 停留时间/s | 产物(质量分数)/% | |||
---|---|---|---|---|---|---|---|
蜡 | 轻质芳烃 | 低碳烯烃 | 苯乙烯 | ||||
HDPE[ LDPE[ HDPE[ HDPE[ PE/PP19] HDPE[ HDPE[ PP[ HDPE[ HDPE[ HDPE[ LLDPE[ PS[ | 锥形喷射床 流化床 流化床 流化床 锥形喷射床 流化砂床 流化床 流化床 流化床 流化床 锥形喷射床+多管 固定床 锥形喷射床 | 500~700 500~700 650 640~645 450 700~800 780 668~746 604~800 700~800 500、900~950 450、900 450~500 | — 15 0.8~1.0 0.82~0.99 — — 0.7~1.6 — — 0.7~2.27 0.016 1.3 — | 70~12 45.3~4.0 51.9~25.3 78.9~79.7 80/92 — 0.2~0 2.5~0 — 30~12 — — — | — — — — — 2.42~3.24 3.8~5.9 18~52 0.82~3.08 — — — 3.06~5.26 | 1.5~37 6.92~53.08 — — — 20.63~26.82 — 28~18.5 13.92~37.87 47.2~62.5 77~55 46.5 0.32~1.23 | — — — — — 0 1.7~0.7 0.8~2.8 — — — — 50.8~70.6 |
塑料名称 | 反应器类型 | 催化剂 | 反应温度/℃ | 产物(质量分数)/% | |||
---|---|---|---|---|---|---|---|
低碳烯烃 | 汽油 | 芳烃 | 苯乙烯 | ||||
HDPE[ HDPE[ LDPE[ HDPE[ HDPE[ HDPE[ HDPE[ PP[ PP[ PS[ PS[ PS[ PS[ PS[ PS[ PS[ PS[ PS[ | 锥形喷射床 锥形喷射床+固定床 固定床 固定床 锥形喷射床 锥形喷射床 固定床 流化床 流化床 固定床 固定床 固定床 固定床 固定床 固定床 固定床 固定床 固定床 | HZSM-5 HZSM-5(Si/Al=30) 酸改性的丝光沸石 FCC Hβ HY Al-MCM-41 MCM-41/SAHA/HUSY HZSM-5/HMOR Hβ AmY HY USY(Si/Al=5.3) Fe-MCM-41 HY/SBA-15 BaO Zn K2O/Si-MCM-41 | 450~500 500 400~500 430 500 500 450 360 360 400 400 400 650 450 650 350 450 400 | 56.4~54.1 58 0 50 30~40 17.97 38 26/24/28 49 — — — — — — — — — | 28.3~29.4 15.2 5.27~13.87 — 45~55 68.65 56 60.56/63.65/51.83 25.54/27.95 — — — — — — — — — | 6.77~4.23 11 0~1.62 — 5~10 24.10 4 0.16/0.25/0.93 1.82/0.48 55.74苯/3.5乙苯 49.08苯/19.2乙苯 33.5苯/34.79乙苯 31.1苯/34.0乙苯 7.5甲苯/22.0乙苯 58.4苯/10.2乙苯 1.6甲苯/0.2乙苯 2.5甲苯/1.16乙苯 — | — — 0 — 0 0 — — — 2.05 0 0 2.5 17 4.36 76.4 47.96 69.02 |
表2 聚烯烃塑料在不同催化剂作用下获得的热解产物分布
塑料名称 | 反应器类型 | 催化剂 | 反应温度/℃ | 产物(质量分数)/% | |||
---|---|---|---|---|---|---|---|
低碳烯烃 | 汽油 | 芳烃 | 苯乙烯 | ||||
HDPE[ HDPE[ LDPE[ HDPE[ HDPE[ HDPE[ HDPE[ PP[ PP[ PS[ PS[ PS[ PS[ PS[ PS[ PS[ PS[ PS[ | 锥形喷射床 锥形喷射床+固定床 固定床 固定床 锥形喷射床 锥形喷射床 固定床 流化床 流化床 固定床 固定床 固定床 固定床 固定床 固定床 固定床 固定床 固定床 | HZSM-5 HZSM-5(Si/Al=30) 酸改性的丝光沸石 FCC Hβ HY Al-MCM-41 MCM-41/SAHA/HUSY HZSM-5/HMOR Hβ AmY HY USY(Si/Al=5.3) Fe-MCM-41 HY/SBA-15 BaO Zn K2O/Si-MCM-41 | 450~500 500 400~500 430 500 500 450 360 360 400 400 400 650 450 650 350 450 400 | 56.4~54.1 58 0 50 30~40 17.97 38 26/24/28 49 — — — — — — — — — | 28.3~29.4 15.2 5.27~13.87 — 45~55 68.65 56 60.56/63.65/51.83 25.54/27.95 — — — — — — — — — | 6.77~4.23 11 0~1.62 — 5~10 24.10 4 0.16/0.25/0.93 1.82/0.48 55.74苯/3.5乙苯 49.08苯/19.2乙苯 33.5苯/34.79乙苯 31.1苯/34.0乙苯 7.5甲苯/22.0乙苯 58.4苯/10.2乙苯 1.6甲苯/0.2乙苯 2.5甲苯/1.16乙苯 — | — — 0 — 0 0 — — — 2.05 0 0 2.5 17 4.36 76.4 47.96 69.02 |
原料 | 脱氯方法 | 反应温度/℃ | 停留时间/min | 催化剂 | 吸附剂 | 油质量分数/% | 油中氯质量分数/% |
---|---|---|---|---|---|---|---|
PVC[ PVC[ PE\PP\PS\PVC\PET[ PE\PP\PS\PVC\PET[ PP\PVC[ PE\PP\PS\PVC[ | 热解 逐步热解 逐步热解 分步催化热解 催化热解 吸附剂+热解 | 300 360,500 300,500 300,400 380 120,430 | 180(反应时间) 39 60 30 360(反应时间) 60 | 无 无 无 ZSM-5 Al-Mg 无 | 无 无 无 无 无 Ca-C | 3.5 32.39 58.2 56.6~57.0 65.18 65~69 | 5.75 0.063 0.2 0.3 2.78 0 |
表3 聚氯乙烯在不同脱氯操作下的产物分布及氯脱除情况
原料 | 脱氯方法 | 反应温度/℃ | 停留时间/min | 催化剂 | 吸附剂 | 油质量分数/% | 油中氯质量分数/% |
---|---|---|---|---|---|---|---|
PVC[ PVC[ PE\PP\PS\PVC\PET[ PE\PP\PS\PVC\PET[ PP\PVC[ PE\PP\PS\PVC[ | 热解 逐步热解 逐步热解 分步催化热解 催化热解 吸附剂+热解 | 300 360,500 300,500 300,400 380 120,430 | 180(反应时间) 39 60 30 360(反应时间) 60 | 无 无 无 ZSM-5 Al-Mg 无 | 无 无 无 无 无 Ca-C | 3.5 32.39 58.2 56.6~57.0 65.18 65~69 | 5.75 0.063 0.2 0.3 2.78 0 |
1 | 马占峰, 姜宛君, 杨森. 中国塑料加工工业(2019)[J]. 中国塑料, 2020, 34(5): 102-106. |
MA Zhanfeng, JIANG Wanjun, YANG Sen. China plastics processing industry(2019)[J]. China Plastics, 2020, 34(5): 102-106. | |
2 | 唐赛珍. 我国塑料废弃物资源化现状及前景[J]. 新材料产业, 2011(10): 62-67. |
TANG Saizhen.Current situation and prospect of plastic waste recycling in China[J]. New Materials Industry, 2011(10): 62-67. | |
3 | MIANDAD R, BARAKAT M A, ABURIAZAIZA A S, et al. Catalytic pyrolysis of plastic waste: a review[J]. Process Safety and Environmental Protection, 2016, 102: 822-838. |
4 | KUMAR Sachin, PANDA Achyut Kumar, SINGH Raghubansh Kumar. A review on tertiary recycling of high-density polyethylene to fuel[J]. Resources, Conservation and Recycling, 2011, 55(11): 893-910. |
5 | MARCILLA A, BELTRÁN M I, NAVARRO R. Evolution of products during the degradation of polyethylene in a batch reactor[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 14-21. |
6 | MCCAFFREY W C, COOPER D G, KAMAL M R. Tertiary recycling of polyethylene: mechanism of liquid production from polyethylene by thermolysis/reactive distillation[J]. Polymer Degradation and Stability, 1998, 62(3): 513-521. |
7 | KUMAR Sachin. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis[J]. Brazilian Journal of Chemical Engineering, 2011, 28(4): 659-667. |
8 | KUMAR Sachin, SINGH Raghubansh Kumar. Pyrolysis kinetics of waste high-density polyethylene using thermogravimetric analysis[J]. International Journal of ChemTech Research, 2014, 6(1): 131-137. |
9 | BALLICE Levent, Mithat YÜKSEL, SALAM Mehmet, et al. Classification of volatile products from the temperature-programmed pyrolysis of low-and high-density polyethylene[J]. Energy and Fuels, 1998, 12(5): 925-928. |
10 | PANDA Achyut Kumar, SINGH Raghubansh Kumar. Thermo-catalytic degradation of low density polyethylene to liquid fuel over Kaolin catalyst[J]. International Journal of Environment and Waste Management, 2014, 13(1): 104-114. |
11 | BALLICE Levent, REIMERT Rainer. Classification of volatile products from the temperature-programmed pyrolysis of polypropylene (PP), atactic-polypropylene (APP) and thermogravimetrically derived kinetics of pyrolysis[J]. Chemical Engineering and Processing, 2002, 41: 289-296. |
12 | PANDA Achyut Kumar, SINGH Raghubansh Kumar. Experimental optimization of process for the thermo-catalytic degradation of waste polypropylene to liquid fuel[J]. Advances in Energy Engineering (AEE), 2013, 1(3): 74-84. |
13 | KIM Seungsoo, KIM Seungdo. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor[J]. Chemical Engineering Journal, 2004, 98(1/2): 53-60. |
14 | LOPEZ G, ARTETXE M, AMUTIO M, et al. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 346-368. |
15 | ELORDI Gorka, OLAZAR Martin, LOPEZ Gartzen, et al. Product yields and compositions in the continuous pyrolysis of high density polyethylene in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6650-6659. |
16 | WILLIAMS Paul T, WILLIAMS Elizabeth A. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1/2): 107-126. |
17 | BERRUECO C, MASTRAL F J, ESPERANZA E, et al. Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables[J]. Energy & Fuels, 2002, 16(5): 1148-1153. |
18 | MASTRAL F J, ESPERANZA E, GARCÍA P, et al. Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 1-15. |
19 | AGUADO Roberto, OLAZAR Martín, JOSÉ María J SAN, et al. Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor[J]. Energy & Fuels, 2002, 16(6): 1429-1437. |
20 | MASTRAL Jośe F, BERRUECO César, CEAMANOS Jesús. Pyrolysis of high-density polyethylene in free-fall reactors in series[J]. Energy & Fuels, 2006, 20(4): 1365-1371. |
21 | HERNÁNDEZ Maria Del Remedio, GARCÍA Ángela N, MARCILLA Antonio. Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 314-322. |
22 | ARTETXE Maite, LOPEZ Gartzen, ELORDI Gorka, et al. Production of light olefins from polyethylene in a two-step process: pyrolysis in a conical spouted bed and downstream high-temperature thermal cracking[J]. Industrial & Engineering Chemistry Research, 2012, 51(43): 13915-13923. |
23 | DELLA ZASSA M, FAVERO M, CANU P. Two-steps selective thermal depolymerization of polyethylene. 1: Feasibility and effect of devolatilization heating policy[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 248-255. |
24 | ARTETXE Maite, LOPEZ Gartzen, AMUTIO Maider, et al. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor[J]. Waste Management, 2015, 45: 126-133. |
25 | MARCILLA Antonio, BELTRÁN M I, NAVARRO R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions[J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 78-86. |
26 | ONWUDILI Jude A, INSURA Nagi, WILLIAMS Paul T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 293-303. |
27 | PREDEL M, KAMINSKY W. Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes[J]. Polymer Degradation and Stability, 2000, 70(3): 373-385. |
28 | TAKUMA Kazuhiko, UEMICHI Yoshio, SUGIOKA Masatoshi, et al. Production of aromatic hydrocarbons by catalytic degradation of polyolefins over H-gallosilicate[J]. Industrial & Engineering Chemistry Research, 2001, 40(4): 1076-1082. |
29 | TAKUMA Kazuhiko, UEMICHI Yoshio, AYAME Akimi. Product distribution from catalytic degradation of polyethylene over H-gallosilicate[J]. Applied Catalysis A: General, 2000, 192(2): 273-280. |
30 | MASTRAL F J, ESPERANZA E, BERRUECO C, et al. Fluidized bed thermal degradation products of HDPE in an inert atmosphere and in air-nitrogen mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(1): 1-17. |
31 | ERKIAGA Aitziber, LOPEZ Gartzen, BARBARIAS Itsaso, et al. HDPE pyrolysis-steam reforming in a tandem spouted bed-fixed bed reactor for H2 production[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 34-41. |
32 | CONESA Juan A, FONT Rafael, MARCILLA Antonio, et al. Pyrolysis of polyethylene in a fluidized bed reactor[J]. Energy & Fuels, 1994, 8(6): 1238-1246. |
33 | JUNG S H, CHO M H, KANG B S, et al. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor[J]. Fuel Processing Technology, 2010, 91(3): 277-284. |
34 | ARTETXE Maite, LOPEZ Gartzen, AMUTIO Maider, et al. Light olefins from HDPE cracking in a two-step thermal and catalytic process[J]. Chemical Engineering Journal, 2012, 207/208: 27-34. |
35 | Pallab DAS, TIWARI Pankaj. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel[J]. Waste Management, 2018, 79: 615-624. |
36 | BARBARIAS Itsaso, LOPEZ Gartzen, ARTETXE Maite, et al. Pyrolysis and in-line catalytic steam reforming of polystyrene through a two-step reaction system[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 502-510. |
37 | WONG H W, BROADBELT L J. Tertiary resource recovery from waste polymers via pyrolysis: neat and binary mixture reactions of polypropylene and polystyrene[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4716-4723. |
38 | KARADUMAN Ali. Pyrolysis of polystyrene plastic wastes with some organic compounds for enhancing styrene yield[J]. Energy Sources, 2002, 24(7): 667-674. |
39 | HUSSAIN Zahid, KHAN Khalid Mohammed, HUSSAIN Khadim. Microwave-metal interaction pyrolysis of polystyrene[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(1): 39-43. |
40 | BARTOLI Mattia, ROSI Luca, FREDIANI Marco, et al. Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113(3): 281-287. |
41 | KIM J R, KIM Y A, YOON J H, et al. Catalytic degradation of polypropylene: effect of dealumination of clinoptilolite catalyst[J]. Polymer Degradation and Stability, 2002, 75(2): 287-294. |
42 | AGUADO J, SERRANO D P, SOTELO J L, et al. Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and nanosized HZSM-5[J]. Industrial & Engineering Chemistry Research, 2001, 40(24): 5696-5704. |
43 | WONG S L, NGADI N, ABDULLAH T A T, et al. Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel[J]. Fuel, 2017, 192: 71-82. |
44 | SEO Y H, LEE K H, SHIN D H. Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 383-398. |
45 | MANOS George, GARFORTH Arthur, DWYER John. Catalytic degradation of high-density polyethylene over different zeolitic structures[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1198-1202. |
46 | WANG Jia, JIANG Jianchun, SUN Yunjuan, et al. Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2019, 200: 112088. |
47 | HWANG E Y, KIM J R, CHOI J K, et al. Performance of acid treated natural zeolites in catalytic degradation of polypropylene[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(2): 351-364. |
48 | ELORDI Gorka, LOPEZ Gartzen, AGUADO Roberto, et al. Catalytic pyrolysis of high density polyethylene on a HZSM-5 zeolite catalyst in a conical spouted bed reactor[J]. International Journal of Chemical Reactor Engineering, 2007, 5(1): 450-455. |
49 | MASTRAL J F, BERRUECO C, GEA M, et al. Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite[J]. Polymer Degradation and Stability, 2006, 91(12): 3330-3338. |
50 | ARTETXE Maite, LOPEZ Gartzen, AMUTIO Maider, et al. Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10637-10645. |
51 | LIN Y H, YEN H Y. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons[J]. Polymer Degradation and Stability, 2005, 89(1): 101-108. |
52 | ELORDI Gorka, OLAZAR Martín, LOPEZ Gartzen, et al. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 345-351. |
53 | ELORDI Gorka, OLAZAR Martín, AGUADO Roberto, et al. Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 450-455. |
54 | OJHA D K, VINU R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 349-359. |
55 | OSIGBESAN A A, WAZIRI A Y, DABAI F N, et al. The effect of temperature and catalyst modification on thermocatalytic degradation of low density polyethylene[C]//Nigerian Society of Chemical Engineers 48th Annual Conference. Abeokuta, Nigeria: Opeoluwa Fasanya, 2018: 1-9. |
56 | AGUADO J, SERRANO D P, MIGUEL G SAN, et al. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 415-423. |
57 | OBALI Zeynep, SEZGI Naime Aslı, Timur DOĞU. Catalytic degradation of polypropylene over alumina loaded mesoporous catalysts[J]. Chemical Engineering Journal, 2012, 207/208: 421-425. |
58 | XIE Congxia, LIU Fusheng, YU Shitao, et al. Catalytic cracking of polypropylene into liquid hydrocarbons over Zr and Mo modified MCM-41 mesoporous molecular sieve[J]. Catalysis Communications, 2008, 10(1): 79-82. |
59 | PANDA A K, SINGH R K. Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene[J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 198-202. |
60 | LEE S Y, YOON J H, KIM J R, et al. Catalytic degradation of polystyrene over natural clinoptilolite zeolite[J]. Polymer Degradation and Stability, 2001, 74(2): 297-305. |
61 | LEE S Y, YOON J H, KIM J R, et al. Degradation of polystyrene using clinoptilolite catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 71-83. |
62 | ZHANG Zhibo, HIROSE Tamaki, NISHIO Suehiro, et al. Chemical recycling of waste polystyrene into styrene over solid acids and bases[J]. Industrial & Engineering Chemistry Research, 1995, 34(12): 4514-4519. |
63 | PARK J J, PARK K, KIM J S, et al. Characterization of styrene recovery from the pyrolysis of waste expandable polystyrene[J]. Energy & Fuels, 2003, 17(6): 1576-1582. |
64 | MISKOLCZI N, BARTHA L. Investigation of hydrocarbon fractions form waste plastic recycling by FTIR, GC, EDXRFS and SEC techniques[J]. Journal of Biochemical and Biophysical Methods, 2008, 70(6): 1247-1253. |
65 | MA Chuan, YU Jie, YAN Qianqian, et al. Pyrolysis-catalytic upgrading of brominated high impact polystyrene over Fe and Ni modified catalysts: influence of HZSM-5 and MCM-41 catalysts[J]. Polymer Degradation and Stability, 2017, 146: 1-12. |
66 | DU Jinlong, SHI Chunwei, WU Wenyuan, et al. Synthesis of core-shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene[J]. Science and Technology of Advanced Materials, 2017, 18(1): 939-949. |
67 | ADNAN A, SHAH J, JAN M R. Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2494-2500. |
68 | XIE Congxia, LIU Fusheng, YU Shitao, et al. Study on catalytic pyrolysis of polystyrene over base modified silicon mesoporous molecular sieve[J]. Catalysis Communications, 2008, 9(6): 1132-1136. |
69 | SILVA Antonio O S, SOUZA Marcelo J B, PEDROSA Anne M G, et al. Development of HZSM-12 zeolite for catalytic degradation of high-density polyethylene[J]. Microporous and Mesoporous Materials, 2017, 244: 1-6. |
70 | ZHOU Qian, WANG Yuzhong, TANG Chao, et al. Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE[J]. Polymer Degradation and Stability, 2003, 80(1): 23-30. |
71 | CALDEIRA Vinícius P S, PERAL Angel, LINARES María. Properties of hierarchical Beta zeolites prepared from protozeolitic nanounits for the catalytic cracking of high density polyethylene[J]. Applied Catalysis A: General, 2017, 531: 187-196. |
72 | XUE Teng, LI Sisi, WU Haihong, et al. Eco-friendly and cost-effective synthesis of ZSM-5 aggregates with hierarchical porosity[J]. Industrial and Engineering Chemistry Research, 2017, 56: 13535-13542. |
73 | SOCCI Joseph, OSATIASHTIANI Amin, KYRIAKOU Georgios, et al. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts[J]. Applied Catalysis A: General, 2019, 570: 218-227. |
74 | INSURA Nagi, ONWUDILI Jude A, WILLIAMS Paul T. Catalytic pyrolysis of low-density polyethylene over alumina-supported noble metal catalysts[J]. Energy & Fuels, 2010, 24: 4231-4240. |
75 | ZHAO Yuzheng, WANG Wei, JING Xiaodong, et al. Catalytic cracking of polypropylene by using Fe-SBA-15 synthesized in an acid-free medium for production of light hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146:104755. |
76 | WILLIAMS Paul T, BAGRI Ranbir. Hydrocarbon gases and oils from the recycling of polystyrene waste by catalytic pyrolysis[J]. International Journal of Energy Research, 2004, 28(1): 31-44. |
77 | MUHAMMAD Chika, ONWUDILI Jude A, WILLIAMS Paul T. Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis-catalysis reactor for fuel production[J]. Energy & Fuels, 2015, 29: 2601-2609. |
78 | SERRANO D P, AGUADO J, ESCOLA J M. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2-Al2O3: comparison with thermal cracking[J]. Applied Catalysis B: Environmental, 2000, 25(2/3): 181-189. |
79 | RATNASARI Devy K, NAHIL Mohamad A, WILLIAMS Paul T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
80 | ZHANG Xuesong, LEI Hanwu, YADAVALLI Gayatri, et al. Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5[J]. Fuel, 2015, 144: 33-42. |
81 | FAN Liangliang, ZHANG Yaning, LIU Shiyu, et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO[J]. Energy Conversion and Management, 2017, 149: 432-441. |
82 | KAMBLE Vinayak M, SAMARTH Nikesh B, MAHANWAR Prakash A. Thermo-catalytic pyrolysis of waste high-density polyethylene: effect of γ-ray irradiation on degradation[J]. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(11): 1102-1108. |
83 | GULAB Hussain, Muhammad Rasul JAN, SHAH Jan, et al. Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: effect of process conditions[J]. Journal of Environmental Science and Health, Part A, 2010, 45(7): 908-915. |
84 | ABBAS-ABADI Mehrdad Seifali, HAGHIGHI Mehdi Nekoomanesh, YEGANEH Hamid. Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor[J]. Fuel Processing Technology, 2013, 109: 90-95. |
85 | KARADUMAN Ali, Çetin KOÇAK M, BILGESÜ Ali Y. Flash vacuum pyrolysis of low density polyethylene in a free-fall reactor[J]. Polymer-Plastics Technology and Engineering, 2003, 42(2): 181-191. |
86 | SUSASTRIAWAN A A P, PURNOMO, SANDRIA Aris. Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste[J]. Thermal Science and Engineering Progress, 2020, 17: 100497. |
87 | PARK J W, KIM J H, SEO G. The effect of pore shape on the catalytic performance of zeolites in the liquid-phase degradation of HDPE[J]. Polymer Degradation and Stability, 2002, 76(3): 495-501. |
88 | BUEKENS A G, HUANG H. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes[J]. Resources, Conservation and Recycling, 1998, 23(3): 163-181. |
89 | SUN Qinglei, SHI Xingang, LIN Yunliang, et al. Thermogravimetric-mass spectrometric study of the pyrolysis behavior of PVC[J]. Journal of China University of Mining and Technology, 2007, 17(2): 242-245. |
90 | ZHU H M, JIANG X G, YAN J H, et al. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 1-9. |
91 | KOSUDA Takashi, OKADA Tomohiko, NOZAKA Shogo, et al. Characteristics and mechanism of low temperature dehydrochlorination of poly(vinyl chloride) in the presence of zinc(Ⅱ) oxide[J]. Polymer Degradation and Stability, 2012, 97(4): 584-591. |
92 | MIRANDA Rosa, YANG Jin, ROY Christian, et al. Vacuum pyrolysis of PVC Ⅰ. Kinetic study[J]. Polymer Degradation and Stability, 1999, 64(1): 127-144. |
93 | MIRANDA Rosa, PAKDEL Hooshang, ROY Christian, et al. Vacuum pyrolysis of PVCⅡ: Product analysis[J]. Polymer Degradation and Stability, 1999, 66(1): 107-125. |
94 | MA Shibai, LU Jun, GAO Jinsheng. Study of the low temperature pyrolysis of PVC[J]. Energy & Fuels, 2002, 16(2): 338-342. |
95 | INOUE Tsuyoshi, MIYAZAKI Miyuki, KAMITANI Masataka, et al. Dechlorination of polyvinyl chloride by its grinding with KOH and NaOH[J]. Advanced Powder Technology, 2005, 16(1): 27-34. |
96 | LÓPEZ A, MARCO I D, CABALLERO B M, et al. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes[J]. Fuel Processing Technology, 2011, 92(2): 253-260. |
97 | BHASKAR Thallada, UDDIN Md Azhar, KANEKO Jun, et al. Liquefaction of mixed plastics containing PVC and dechlorination by calcium-based sorbent[J]. Energy & Fuels, 2003, 17(1): 75-80. |
98 | BHASKAR Thallada, MATSUI Toshiki, NITTA Koji, et al. Laboratory evaluation of calcium-, iron-, and potassium-based carbon composite sorbents for capture of hydrogen chloride gas[J]. Energy & Fuels, 2002, 16(6): 1533-1539. |
99 | LOPEZ-URIONABARRENECHEA A, DE MARCO I, CABALLERO B M, et al. Catalytic stepwise pyrolysis of packaging plastic waste[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 54-62. |
100 | TANG Chao, WANG Yuzhong, ZHOU Qian, et al. Catalytic effect of Al-Zn composite catalyst on the degradation of PVC-containing polymer mixtures into pyrolysis oil[J]. Polymer Degradation and Stability, 2003, 81(1): 89-94. |
101 | ZHOU Qian, TANG Chao, WANG Yuzhong, et al. Catalytic degradation and dechlorination of PVC-containing mixed plastics via Al-Mg composite oxide catalysts[J]. Fuel, 2004, 83(13): 1727-1732. |
102 | Taewoo LEE, Jechan LEE, Yong Sik OK, et al. Utilizing CO2 to suppress the generation of harmful chemicals from thermal degradation of polyvinyl chloride[J]. Journal of Cleaner Production, 2017, 162(20): 1465-1471. |
103 | ZHOU Qian, LAN Wenwen, DU Anke, et al. Lanthania promoted MgO: simultaneous highly efficient catalytic degradation and dehydrochlorination of polypropylene/polyvinyl chloride[J]. Applied Catalysis B: Environmental, 2008, 80(1/2): 141-146. |
104 | LU Jun, MA Shibai, GAO Jinsheng. Study on the pressurized hydrolysis dechlorination of PVC[J]. Energy & Fuels, 2002, 16(5): 1251-1255. |
105 | YOSHIOKA Toshiki, KAMEDA Tomohito, IMAI Shogo, et al. Dechlorination of poly(vinyl chloride) using NaOH in ethylene glycol under atmospheric pressure[J]. Polymer Degradation and Stability, 2008, 93(6): 1138-1141. |
106 | ZHAO Peitao, LI Zhaozhi, LI Tian, et al. The study of nickel effect on the hydrothermal dechlorination of PVC[J]. Journal of Cleaner Production, 2017, 152: 38-46. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[13] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |