化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2802-2812.DOI: 10.16085/j.issn.1000-6613.2020-1234
杜佳辉(), 刘佳(), 杨菊平, 祁弘毅, 窦晓娜, 李坚
收稿日期:
2020-07-01
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
刘佳
作者简介:
杜佳辉(1995—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
DU Jiahui(), LIU Jia(), YANG Juping, QI Hongyi, DOU Xiaona, LI Jian
Received:
2020-07-01
Online:
2021-05-06
Published:
2021-05-24
Contact:
LIU Jia
摘要:
考虑到挥发性有机物(VOCs)治理技术的复杂性以及实际工程应用中的经济效益,生物联合治理技术成为了一种研究趋势。本文阐述了目前主要的生物联合治理技术,包括紫外光降解技术-生物法、低温等离子体技术-生物法、化学-生物法、吸附-生物法、燃烧-生物法以及生物法组合工艺。总结了生物联合治理技术的研究进展与存在的问题。紫外光、低温等离子体技术以及化学法常作为预处理技术与生物进行联合应用,在提高整体降解效果的同时也会使生物反应器具有更好的运行性能。吸附法、燃烧法通常作为末端处理技术与生物法进行联合治理,以保障废气可以达标排放。生物组合技术也通过将不同生物治理技术相结合形成协同优势使其对于工业废气取得更优的降解效果。文中指出了生物联合技术在废气治理方面是一个有前景的选择,但生物联合治理技术的研究还不够深入,实际应用也不够成熟,因而需要进行进一步的探究。
中图分类号:
杜佳辉, 刘佳, 杨菊平, 祁弘毅, 窦晓娜, 李坚. 生物法联合工艺治理VOCs的研究进展[J]. 化工进展, 2021, 40(5): 2802-2812.
DU Jiahui, LIU Jia, YANG Juping, QI Hongyi, DOU Xiaona, LI Jian. Recent advances in biological combined technology for VOCs treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2802-2812.
1 | SUN Jian, SHEN Zhenxing, ZHANG Yue, et al. Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi’an, China[J]. Environmental Science and Pollution Research, 2019, 26(27): 27769-27782. |
2 | LIU Yafei, SONG Mengdi, LIU Xingang, et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China[J]. Environmental Pollution, 2020, 257:113599. |
3 | RAO Zepeng, SHI Gansheng, WANG Zhuang, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: revealing the activity enhancement mechanism and different reaction paths[J]. Chemical Engineering Journal, 2020, 395:125078. |
4 | KAMAL Muhammad Shahzad, RAZZAK Shaikh A, HOSSAIN Mohammad M. Catalytic oxidation of volatile organic compounds (VOCs)—A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
5 | GOSPODAREK Milena, RYBARCZYK Piotr, SZULCZYNSKI Bartosz, et al. Comparative evaluation of selected biological methods for the removal of hydrophilic and hydrophobic odorous VOCs from air[J]. Processes, 2019, 7(4):187. |
6 | LIU Huijuan, XU Bowen, WEI Keyan, et al. Adsorption of low-concentration VOCs on various adsorbents: correlating partition coefficient with surface energy of adsorbent[J]. Science of the Total Environment, 2020, 733:139376. |
7 | GUAN Yanan, WANG Lei, WANG Shujuan, et al. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China[J]. Journal of Environmental Sciences, 2020, 97: 25-34. |
8 | 黎焕珍. 关于工业VOC的危害分析及治理技术探讨[J]. 环境与发展, 2019, 31(2): 65-66. |
LI Huanzhen. Discussion on hazard analysis and treatment technology of industrial VOC[J]. Environment and Development, 2019, 31(2): 65-66. | |
9 | 杜芳芳. 大气环境中挥发性有机废气治理技术发展研究[J].山西化工, 2020, 40 (1): 158-159, 162. |
DU Fangfang. Study on the development of the treatment technology of VOCs in the atmospheric environment[J]. Shanxi Chemical Industry, 2020, 40 (1): 158-159, 162. | |
10 | ESTRADA Jose M, KRAAKMAN N J R B, MUNOZ Raul, et al. A comparative analysis of odour treatment technologies in wastewater treatment plants[J]. Environmental Science & Technology, 2011, 45(3): 1100-1106. |
11 | LIANG Zhishu, WANG Jijun, ZHANG Yuna, et al. Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter[J]. Journal of Cleaner Production, 2020, 253:120019. |
12 | RYU H W, CHO K S, LEE T H. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system[J]. Bioresource Technology, 2011, 102(7): 4654-4660. |
13 | YANG Chunping, QIAN Hui, LI Xiang, et al. Simultaneous removal of multicomponent VOCs in biofilters[J]. Trends in Biotechnology, 2018, 36(7): 673-685. |
14 | HAZRATI Hossein, SHAYEGAN Jalal. Influence of suspended carrier on membrane fouling and biological removal of styrene and ethylbenzene in MBR[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 59-68. |
15 | HAZRATI Hossein, SHAYEGAN Jalal, SEYEDI Seyed Mojtaba. Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 1-12. |
16 | KHORAMFAR Shooka, JONES Kim D, BOSWELL James, et al. Evaluation of a sequential biotrickling-biofiltration unit for removal of VOCs from the headspace of crude oil storage tanks[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1778-1789. |
17 | CHENG Yan, HE Huijun, YANG Chunping, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances, 2016, 34(6): 1091-1102. |
18 | 兰善红, 温志良, 杨达, 等. 化学氧化-生物法处理挥发性有机废气研究[J]. 化工科技, 2018, 26(3): 38-41, 60. |
LAN Shanhong, WEN Zhiliang, YANG Da, et al. Treatment of volatile organic waste gas by chemical oxidation-biological process[J]. Science & Technology in Chemical Industry, 2018, 26(3): 38-41, 60. | |
19 | 蒋昊羽. 生物滴滤法与光催化法联用对二甲苯降解的探究[D]. 西安: 西安建筑科技大学, 2018. |
JIANG Haoyu. The exploration of biological trickle filter combined with photocatalysis to degradation dimethylbenzene[D]. Xi’an: Xi’an University of Architecture and Technology, 2018. | |
20 | 郭宇辰, 李泊均, 南海娇, 等.VOCs废气处理技术的研究进展[J]. 化工管理, 2019(7): 114-116. |
GUO Yuchen, LI Bojun, Haijiao NAN, et al. Research progress in VOCs exhaust gas treatment technology[J]. Chemical Enterprise Management, 2019(7): 114-116. | |
21 | 姜记东, 张长平, 白珺. 紫外光氧化技术处理VOCs研究进展[J]. 资源节约与环保, 2020(1): 80. |
JIANG Jidong, ZHANG Changping, BAI Jun. Research progress of ultraviolet light oxidation technology to treat VOCs[J]. Resources Economization & Environmental Protection, 2020(1): 80. | |
22 | 王锦华, 杨军, 徐海波, 等. 紫外光解处理石化污水臭气中VOCs的应用研究[J]. 环境工程, 2019, 37(7): 148-152. |
WANG Jinhua, YANG Jun, XU Haibo, et al. Application research on treatment of odor and VOCs in petrochemical wastewater by ultraviolet photolysis[J]. Environmental Engineering, 2019, 37(7): 148-152. | |
23 | 陈金垒, 陈雨桐, 陈铭敏, 等. 光催化与生物处理组合技术的研究进展[J]. 广州化工, 2020, 48(3): 23-25. |
CHEN Jinlei, CHEN Yutong, CHEN Mingmin, et al. Research progress on combined technology of photocatalysis and biological treatment[J]. Guangzhou Chemical Industry, 2020, 48(3): 23-25. | |
24 | 袁昊, 刘忠强, 陈大华. 紫外光在环保处理中的应用研究[J]. 灯与照明, 2018, 42(4): 38-41, 45. |
YUAN Hao, LIU Zhongqiang, CHEN Dahua. Application of ultraviolet light in environmental protection treatment[J]. Light & Lighting, 2018, 42(4): 38-41, 45. | |
25 | 李玉林, 李成, 王立新, 等.生物滴滤+氧化+紫外光解技术在污水除臭中的应用[J]. 神华科技, 2017, 15(5): 93-95. |
LI Yulin, LI Cheng, WANG Lixin, et al. Biological filter + oxidation + ultraviolet photolysis degradation technology's application in sewage deodorant [J]. Shenhua Science and Technology, 2017, 15(5): 93-95. | |
26 | YU Jianming, LIU Wei, CHENG Zhuowei, et al. Dichloromethane removal and microbial variations in a combination of UV pretreatment and biotrickling filtration[J]. Journal of Hazardous Materials, 2014, 268: 14-22. |
27 | ZHU Runye, CHRISTIAN Kennes, CHENG Zhuowei, et al. Styrene removal in a biotrickling filter and a combined UV-biotrickling filter: steady- and transient-state performance and microbial analysis[J]. Chemical Engineering Journal, 2015, 275: 168-178. |
28 | VOLHARD Max-Fabian, CHRIST Jonas Johannes, BLANK Lars Mathias, et al. Seawater activated TiO2 photocatalyst for degradation of organic compounds[J]. Sustainable Chemistry and Pharmacy, 2020, 16:100251. |
29 | ZHANG Xin, YUAN Xingzhong, JIANG Longbo, et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: recent advances[J]. Chemical Engineering Journal, 2020, 390:124475. |
30 | ZHANG Yanzong, XIONG Xiaoyan, HAN Yue, et al. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: an overview[J]. Chemosphere, 2012, 88(2): 145-154. |
31 | 张强. 光催化氧化耦合生物滴滤净化恶臭气体的试验研究[D]. 扬州: 扬州大学, 2019. |
ZHANG Qiang. Experimental study on photocatalytic oxidation coupled with bio-trickling to purify malodorous gases[D]. Yangzhou: Yangzhou University, 2019. | |
32 | HINOJOSA-REYES M, RODRIGUEZ-GOZALEZ V, ARRIAGA S. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process[J]. Journal of Hazardous Materials, 2012, 209/210: 365-371. |
33 | 黄修行. 光催化组合生物滴滤塔工艺处理氯苯的初步研究[D]. 广州: 广东工业大学, 2014. |
HUANG Xiuxing. The preliminary study of a combination of photocatalytic and bio-trickling filter process on degradation of chlorobenzene[D]. Guangzhou: Guangdong University of Technology, 2014. | |
34 | 韩忠明. 深度光催化氧化耦合生物洗涤技术处理污水恶臭气体[J]. 安全、健康和环境, 2019, 19(5): 30-34. |
HAN Zhongming. Enhanced photocatalytic oxidation technology coupled with bioscrubber for the removal of odor in sewage treatment plant[J]. Safety Health & Environment, 2019, 19(5): 30-34. | |
35 | HAGER S, BAUER R, KUDIELK A G. Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide[J]. Chemosphere, 2000, 41(8): 1219-1225. |
36 | MOUSSAVI Gholamreza, MOHSENI Madjid. Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs[J]. Journal of Hazardous Materials, 2007, 144(1/2): 59-66. |
37 | WANG Can, XI Jinying, HU Hongying, et al. Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 1120-1125. |
38 | WANG Can, XI Jinying, HU Hongying, et al. Effects of UV pretreatment on microbial community structure and metabolic characteristics in a subsequent biofilter treating gaseous chlorobenzene[J]. Bioresource Technology, 2009, 100(23): 5581-5587. |
39 | 王灿, 席劲瑛, 胡洪营, 等. 紫外光降解对生物过滤塔去除氯苯性能的影响机制研究[J]. 环境科学, 2012, 33(1): 32-36. |
WANG Can, XI Jinying, HU Hongying, et al. Mechanisms of UV photodegradation on performance of a subsequent biofilter treating gaseous chlorobenzene[J]. Environmental Science, 2012, 33(1): 32-36. | |
40 | PALAU Jordi, PENYA-ROJA Josep M, GABALDON Carmen, et al. Effect of pre-treatments based on UV photocatalysis and photo-oxidation on toluene biofiltration performance[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(1): 65-72. |
41 | CHENG Zhuowei, ZHANG Lili, CHEN Jianmeng, et al. Treatment of gaseous alpha-pinene by a combined system containing photo oxidation and aerobic biotrickling filtration[J]. Journal of Hazardous Materials, 2011, 192(3): 1650-1658. |
42 | 杜长明, 李子明, 黄娅妮, 等. 等离子体与生物过滤联合净化有机废气新技术[C]//中国环境科学学会. 2016年中国环境科学学会学术年会论文集(第四版). 海口: 中国环境科学学会, 2016: 73-81. |
DU Changming, LI Ziming, HUANG Yani, et al. A new technology for purifying organic waste gas by plasma and biofiltration[C]//Chinese Society for Environmental Sciences. Proceedings of the 2016 Annual Conference of Chinese Society for Environmental Sciences (fourth edition). Haikou, China: Chinese Society for Environmental Sciences, 2016: 73-81. | |
43 | 吴艳. 介质阻挡放电等离子体增强生物滴滤去除有机废气实验研究[D]. 杭州: 浙江大学, 2013. |
WU Yan. Study on volatile organic compounds treatment using biotrickling filter enhanced with dielectric barrier discharge[D]. Hangzhou: Zhejiang University, 2013. | |
44 | 孙彪. 低温等离子体联合生物滴滤降解挥发性有机物研究[D]. 青岛: 青岛科技大学, 2017. |
SUN Biao. Study on degradation of volatile organic compounds by low temperature plasma and biotrickling filter[D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
45 | SCHIAVON Marco, TORRETTA Vincenzo, CASAZZA Andrea, et al. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: a review[J]. Water, Air & Soil Pollution, 2017, 228(10): 1-20. |
46 | WEI Z S, LI H Q, HE J C, et al. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process[J]. Bioresource Technology, 2013, 146: 451-456. |
47 | ZHU Runye, MAO Yubo, JIANG Liying, et al. Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts[J]. Chemical Engineering Journal, 2015, 279: 463-471. |
48 | SCHIAVON Marco, SCHIORLIN Milko, TORRETTA Vincenzo, et al. Non-thermal plasma assisting the biofiltration of volatile organic compounds[J]. Journal of Cleaner Production, 2017, 148: 498-508. |
49 | MARTINI Luca Matteo, COLLER Graziano, SCHIAVON Marco, et al. Non-thermal plasma in waste composting facilities: from a laboratory-scale experiment to a scaled-up economic model[J]. Journal of Cleaner Production, 2019, 230: 230-240. |
50 | 李华琴, 何觉聪, 陈洲洋, 等. 低温等离子体-生物法处理硫化氢气体研究[J]. 环境科学, 2014, 35(4): 1256-1262. |
LI Huaqin, HE Juecong, CHEN Zhouyang, et al. Hydrogen sulfide removal by the combination of non-thermal plasma and biological process[J]. Environmental Science, 2014, 35(4): 1256-1262. | |
51 | JIANG Liying, LI Hui, CHEN Jianmeng, et al. Combination of non-thermal plasma and biotrickling filter for chlorobenzene removal[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(12): 3079-3087. |
52 | 聂国锋. 等离子体催化/生物滴滤耦合降解含氯VOCs的工艺特性[D]. 杭州: 浙江工业大学, 2016. |
NIE Guofeng. Characteristics of nonthermal plasma catalysis reactor coupled with bio-trickling filter for chlorinated VOCs treatment[D]. Hangzhou: Zhejiang University of Technology, 2016. | |
53 | LU C S, LIN M R, WEY I H. Removal of EATX from waste gases by a trickle-bed air biofilter[J]. Journal of Environmental Engineering, 2001, 127(10): 946-951. |
54 | 方美青. O3氧化-化学吸收联合处理再生胶恶臭气体的研究及应用[D]. 杭州: 浙江工业大学, 2010. |
FANG Meiqing. Research on reclaimed rubber exhaust gas treated with O3 oxidation coupled with chemical absorption[D]. Hangzhou: Zhejiang University of Technology, 2010. | |
55 | 杨传忠, 荣中原, 廖庆花, 等. 污水处理厂臭气处理方法分析[J]. 再生资源与循环经济, 2019, 12(7): 38-40. |
YANG Chuanzhong, RONG Zhongyuan, LIAO Qinghua, et al. Analysis of common deodorization methods in sewage treatment station[J]. Recyclable Resources and Circular Economy, 2019, 12(7): 38-40. | |
56 | 张超, 赵梦升, 张丽丽, 等. 微量臭氧强化生物滴滤降解甲苯性能研究[J]. 环境科学, 2013, 34(12): 4669-4674. |
ZHANG Chao, ZHAO Mengsheng, ZHANG Lili, et al. Performance of trace ozone-augmented biological trickling filter in toluene degradation[J]. Environmental Science, 2013, 34(12): 4669-4674. | |
57 | ROHDIN P, MOSHFEGH B. Numerical modelling of industrial indoor environments: a comparison between different turbulence models and supply systems supported by field measurements[J]. Building and Environment, 2011, 46(11): 2365-2374. |
58 | TIAN Lin, LIN Zhang, WANG Qiuwang. Comparison of gaseous contaminant diffusion under stratum ventilation and under displacement ventilation[J]. Building and Environment, 2010, 45(9): 2035-2046. |
59 | 陈照运, 杜晓艳. 化学洗涤吸收法在煤化工恶臭废气处理中的应用[J]. 河南化工, 2015, 32(9): 35-37. |
CHEN Zhaoyun, DU Xiaoyan. Application of chemical washing absorption method in coal chemical industry malodorous waste gas treatment[J]. Henan Chemical Industry, 2015, 32(9): 35-37. | |
60 | 李水林. 生物滴滤与化学洗涤工艺在工业污水厂臭气治理中的应用[J]. 四川化工, 2020, 23(1): 50-53. |
LI Shuilin. Application of biological drop filtration and chemical washing process in odour treatment of industrial sewage plant[J]. Sichuan Chemical Industry, 2020, 23(1): 50-53. | |
61 | 郑启竹. 化学洗涤与生物滴滤组合除臭工艺在印染污水处理厂的运用[J]. 绿色环保建材, 2018(7): 56-57. |
ZHENG Qizhu. Application of chemical washing and biotrickling filtration combined deodorization technology in printing and dyeing wastewater treatment plant[J]. Green Environmental Protection Building Materials, 2018(7): 56-57. | |
62 | 周卿伟. 微量臭氧化强化生物滴滤降解VOCs的作用效应与作用机理[D]. 杭州: 浙江工业大学, 2013. |
ZHOU Qingwei. The enhancing effect and mechanism of micro-ozonation on biotrickling filter treating VOCs[D]. Hangzhou: Zhejiang University of Technology, 2013. | |
63 | 吴桐, 周玉香, 王芳, 等. 燃烧法用于VOCs末端治理的研究进展[J]. 山东化工, 2020, 49(4): 80-81, 84. |
WU Tong, ZHOU Yuxiang, WANG Fang, et al. Research progress of combustion method in terminal treatment for volatile organic compounds[J]. Shandong Chemical Industry, 2020, 49(4): 80-81, 84. | |
64 | 张瑞波, 杨玉敏. 燃烧法处理石化企业VOCs试验研究[J]. 能源环境保护, 2020, 34 (2): 53-56. |
ZHANG Ruibo, YANG Yumin. Experimental research on volatile organic compounds(VOCs) treatment by combustion method in petrochemical industry[J]. Energy Environmental Protection, 2020, 34 (2): 53-56. | |
65 | 徐海滨. 生物法联合锅炉燃烧处理鱼粉加工企业废气的试验研究[D]. 青岛: 青岛理工大学, 2018. |
XU Haibin. Study on treatment of odor waste gas from fish meal production by biological process combined with thermal combustion[D]. Qingdao: Qingdao Technology University, 2018. | |
66 | 彭雨程, 王恒, 冯俊小, 等. 催化燃烧技术处理VOCs的研究进展[J]. 环境与可持续发展, 2015, 40(3): 97-100. |
PENG Yucheng, WANG Heng, FENG Junxiao, et al. Latest researches of catalytic combustion of removing VOCs[J]. Environment and Sustainable Development, 2015, 40(3): 97-100. | |
67 | 李长英, 陈明功, 盛楠, 等. 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3): 917-925. |
LI Changying, CHEN Minggong, SHENG Nan, et al. The characteristics and development of volatile organic compounds treatment technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 917-925. | |
68 | LEETHOCHAWALIT M, BUSTARD M T, WRIGHT P C, et al. Novel vapor-phase biofiltration and catalytic combustion of volatile organic compounds[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5334-5341. |
69 | 钟帼瑛. 化工行业VOC废气治理探讨[J]. 资源节约与环保, 2018(7): 75-76. |
ZHONG Guoying. Discussion on VOC emission control in chemical industry[J]. Resources Economization & Environmental Protection, 2018(7): 75-76. | |
70 | 刘俊逸, 张晓昀, 李杰, 等. 室内甲醛污染物高效治理新技术研究进展[J]. 应用化工, 2020, 49(8): 2101-2106, 2111. |
LIU Junyi, ZHANG Xiaoyun, LI Jie, et al. Research on the new technologies of efficient indoor for maldehyde pollution control[J]. Applied Chemical Industry, 2020, 49(8): 2101-2106, 2111. | |
71 | Quang K LOI, PRASETYO Luisa, TAN Johnathan, et al. Wedge pore modelling of gas adsorption in activated carbon: consistent pore size distributions[J]. Carbon, 2020, 166: 414-426. |
72 | 徐辉军, 郭宗斌, 肖立光. 污水处理场恶臭气体治理技术研究与应用[J]. 广东化工, 2018, 45(18): 143-145. |
XU Huijun, GUO Zongbin, XIAO Liguang. Study and application of treatment for malodorous gas in sewage treatment plant[J]. Guangdong Chemical Industry, 2018, 45(18): 143-145. | |
73 | 王永仪, 张明祥, 宿兵杰. 煤制油企业污水站恶臭异味VOCs废气处理研究[J]. 洁净煤技术, 2019, 25(6): 39-42. |
WANG Yongyi, ZHANG Mingxiang, XIU Bingjie. Study on odorous VOCs treatment from wastewater treatment plant for coal liquefaction enterprises[J]. Clean Coal Technology, 2019, 25(6): 39-42. | |
74 | ALFONSIN Carolina, LEBRERO Raquel, ESTRADA Jose M, et al. Selection of odour removal technologies in wastewater treatment plants: a guideline based on Life Cycle Assessment[J]. Journal of Environmental Management, 2015, 149: 77-84. |
75 | RENE Eldon R, VEIGA Maria C, KENNES Christian. Combined biological and physicochemical waste-gas cleaning techniques[J]. Journal of Environmental Science and Health, Part A, 2012, 47(7): 920-939. |
76 | 齐国庆, 刘发强, 刘光利. 生物洗涤+生物滴滤组合工艺处理炼油污水场恶臭气体工程设计[J]. 环境工程, 2013, 31(1): 56-58, 76. |
QI Guoqing, LIU Faqiang, LIU Guangli. Design of project to treat odor gas in oil refinery wastewater field by bio-scrubbing + bio-trickling combined process[J]. Environmental Engineering, 2013, 31(1): 56-58, 76. | |
77 | 陈雪泉. 生物滴滤和过滤技术降解含硫恶臭有机废气的研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2016. |
CHEN Xuequan. Purification of sulfur odorous organic waste gas by biotrickling filter and biofilter[D]. Guangzhou: University of Chinese Academy of Sciences, 2016. | |
78 | 王刚. 复合生物法处理炼化污水厂恶臭气体[J]. 环境科技, 2015, 28(1): 35-38. |
WANG Gang. Using combined biological method to treat odor gases of sewage plant from petrochemical facilities[J]. Environmental Science and Technology, 2015, 28(1): 35-38. | |
79 | 唐霞, 肖先念, 李碧清, 等. 城市污水厂除臭组合新工艺的优化及应用[J]. 净水技术, 2020, 39(8): 124-130. |
TANG Xia, XIAO Xiannian, LI Biqing, et al. Optimization and application of new combined deodorization process for urban wastewater treatment plant[J]. Water Purification Technology, 2020, 39(8): 124-130. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[11] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[14] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[15] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |