1 | 唐江伟, 吴振强. 新型生物反应器结构研究进展[J]. 中国生物工程杂志, 2007, 27(5): 146-152. | 1 | TANG Jiangwei, WU Zhenqiang. Advances in bioreactor structure innovation and related studies[J]. China Biotechnology, 2007, 27(5): 146-152. | 2 | XIAO Kang, LIANG Shuai, WANG Xiaoma, et al. Current state and challenges of full-scale membrane bioreactor applications: a critical review[J]. Bioresource Technology, 2019, 271: 473-481. | 3 | GARCIA-OCHOA F, GOMEZ E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[J]. Biotechnology Advances, 2009, 27(2): 153-176. | 4 | 王永红, 夏建业, 唐寅, 等. 生物反应器及其研究技术进展[J]. 生物加工过程, 2013, 11(2): 14-23. | 4 | WANG Yonghong, XIA Jianye, TANG Yin, et al. Recent advances in bioreactor and its engineering[J]. Chinese Journal of Bioprocess Engineering, 2013, 11(2): 14-23. | 5 | 孙杨, 聂简琪, 刘秀霞, 等. 生物过程工程研究在创新生物医药开发中应用的驱动力——生物反应器[J]. 化工进展, 2016, 35(4): 971-980. | 5 | SUN Yang, NIE Jianqi, LIU Xiuxia, et al. Pioneering application of biological process engineering in innovative bio-pharmaceutical development—bioreactors[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 971-980. | 6 | BURNS S E, YIACOUMI S, TSOURIS C. Microbubble generation for environmental and industrial separations[J]. Separation and Purification Technology, 1997, 11(3): 221-232. | 7 | 王帅, 李攀, 于水利. 微米气泡特性及其在环境领域的应用[J]. 中国给水排水, 2013, 29(20): 22-25. | 7 | WANG Shuai, LI Pan, YU Shuili. Characteristics of microbubbles and their applications in environmental management[J]. China Water & Wastewater, 2013, 29(20): 22-25. | 8 | ANSARI S, JALILI H, BIZUKOJC M, et al. Influence of the construction of porous spargers on lovastatin production by Aspergillus terreus ATCC 20, 542 in a laboratory bubble column[J]. Bioprocess and Biosystems Engineering, 2019, 42(7): 1205-1213. | 9 | SILVA M T DA, COSTA áVILA V DA, CARDOZO N S M, et al. Characterization of the bubbly flow in a hollow fiber membrane bioreactor[J]. Chemical Engineering Research and Design, 2019, 150: 179-186. | 10 | 鲁志强, 杨丽, 张晨, 等. 微气泡技术在鼓泡塔中的实验研究[J]. 石油化工, 2018, 47(7): 676-680. | 10 | LU Zhiqiang, YANG Li, ZHANG Chen, et al. Experimental study of microbubble technology in bubble column[J]. Petrochemical Technology, 2018, 47(7): 676-680. | 11 | JIN Juan, WANG Ru, TANG Jian, et al. Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse[J]. Colloids and Surfaces A, 2010, 589: 124430. | 12 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. | 12 | ZHANG Zhibing, TIAN Hongzhou, ZHANG Feng, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | 13 | PARMAR R, MAJUMDER S K. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report[J]. Chemical Engineering and Processing, 2013, 64: 79-97. | 14 | GORDIYCHUK A, SVANERA M, BENINI S, et al. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator[J]. Experimental Thermal and Fluid Science, 2016, 70: 51-60. | 15 | JUWANA W E, WIDYATAMA A, DINARYANTO O, et al. Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator[J]. Chemical Engineering Research and Design, 2019, 141: 436-448. | 16 | DE BEER M M, KEURENTJES J T F, SCHOUTEN J C, et al. Bubble formation in co-fed gas-liquid flows in a rotor-stator spinning disc reactor[J]. International Journal of Multiphase Flow, 2016, 83: 142-152. | 17 | KHIRANI S, KUNWAPANITCHAKUL P, AUGIER F, et al. Microbubble generation through porous membrane under aqueous or organic liquid shear flow[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1997-2009. | 18 | KUKIZAKI M, BABA Y. Effect of surfactant type on microbubble formation behavior using Shirasu porous glass (SPG) membranes[J]. Colloids and Surfaces A, 2008, 326(3): 129-137. | 19 | YIN Junlian, LI Jingjing, LI Hua, et al. Experimental study on the bubble generation characteristics for an Venturi type bubble generator[J]. International Journal of Heat and Mass Transfer, 2015, 91: 218-224. | 20 | Chang Hun LEE, CHOI Hong, JERNG Dong Wook, et al. Experimental investigation of microbubble generation in the venture nozzle[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1127-1138. | 21 | ZHANG Wei, LI Zhengjian, AGBLEVOR F A. Microbubble fermentation of recombinant Pichia pastoris for human serum albumin production[J]. Process Biochemistry, 2005, 40(6): 2073-2078. | 22 | 张磊, 张明, 刘春, 等. SPG膜微气泡曝气生物膜反应器运行性能影响因素研究[J]. 环境科学, 2014, 35(8): 3024-3030. | 22 | ZHANG Lei, ZHANG Ming, LIU Chun, et al. Influencing factors for operational performance of a biofilm reactor with microbubble aeration using SPG membrane[J]. Environmental Science, 2014, 35(8): 3024-3030. | 23 | TAO Xihuan, LIU Yefei, JIANG Hong, et al. Microbubble generation with shear flow on large-area membrane for fine particle flotation[J]. Chemical Engineering & Processing: Process Intensification, 2019, 145: 107671. | 24 | WESLEY D J, SMITH R M, ZIMMERMAN W B, et al. Influence of surface wettability on microbubble formation[J]. Langmuir, 2016, 32(5): 1269-1278. | 25 | KAZAKIS N A, MOUZA A A, PARAS S V. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281. | 26 | TESA? V. Mechanisms of fluidic microbubble generation (Ⅰ): Growth by multiple conjunctions[J]. Chemical Engineering Science, 2014, 116: 843-848. | 27 | TESA? V. Mechanisms of fluidic microbubble generation ??: Suppressing the conjunctions[J]. Chemical Engineering Science, 2014, 116: 849-856. | 28 | TESA? V. Microbubble generator excited by fluidicoscillator’s third harmonic frequency[J]. Chemical Engineering Research and Design, 2014, 92: 1603–1615. | 29 | LIU Yefei, HAN Yang, LI Xiaoli, et al. Efficient control of microbubble properties by alcohol shear flows in ceramic membrane channels[J]. Chemical Engineering & Technology, 2018, 41(1): 168-174. | 30 | KUKIZAKI M, GOTO M. Spontaneous formation behavior of uniform-sized microbubbles from Shirasu porous glass (SPG) membranes in the absence of water-phase flow[J]. Colloids and Surfaces A, 2007, 296 (1/2/3): 174-181. | 31 | 李干禄, 韦策, 陈可泉, 等. 一种新型机械搅拌叶轮微膜曝气生物反应器: ZL201410061176.8[P]. 2016-01-20. | 31 | LI Ganlu, WEI Ce, CHEN Kequan, et al. Novel mechanical stirring impeller micro-membrane aerated bioreactor: ZL201410061176.8[P]. 2016-01-20. | 32 | KASTER J A, MICHELSEN D L, VELANDER W H. Increased oxygen transfer in a yeast fermentation using a microbubble dispersion[J]. Applied Biochemistry and Biotechnology, 1990, 24/25: 469-484. | 33 | WEBER J, AGBLEVOR F A. Microbubble fermentation of Trichoderma reesei for cellulase production[J]. Process Biochemistry, 2005, 40(2): 669-676. | 34 | HENSIRISAK P, PARASUKULSATID P, AGBLEVOR F A, et al. Scale-up of microbubble dispersion generator for aerobic fermentation[J]. Applied Biochemistry and Biotechnology, 2002, 101(3): 211-217. | 35 | INAN K, SAL F A, RAHMAN A, et al. Microbubble assisted polyhydroxybutyrate production in Escherichia coli[J]. BMC Research Notes, 2016, 9: 338. | 36 | JU Jung Hyun, Beak Rock OH, Dong Jin KO, et al. Boosting productivity of heterotrophic microalgae by efficient control of the oxygen transfer coefficient using a microbubble sparger[J]. Algal Research, 2019, 41: 101474. | 37 | LI Xiangyang, LI Pingping, ZU Liangzhu, et al. Gas-liquid mass transfer characteristics with microbubble aeration (): Standard stirred tank[J]. Chemical Engineering & Technology, 2016, 39(5): 945-952. | 38 | ZHAO Bo, AGBLEVOR F A, JELESKO J G. Enhanced production of hairy root metabolites using microbubble generator[J]. Plant Cell Tissue and Organ Culture, 2014, 117(2): 157-165. | 39 | NIE Zhikui, JI Xiaojun, SHANG Jingsheng, et al. Arachidonic acid-rich oil production by Mortierella alpine with different gas distributors[J]. Bioprocess and Biosystems Engineering, 2014, 37(6): 1127-1132. | 40 | FUJIKAWA S, ZHANG Rongsheng, HAYAMA S, et al. The control of micro-air-bubble generation by a rotational porous plate[J]. International Journal of Multiphase Flow, 2003, 29(8): 1221-1236. | 41 | LI Ganlu, LI Hui, WEI Guoguang, et al. Hydrodynamics, mass transfer and cell growth characteristics in a novel microbubble stirred bioreactor employing sintered porous metal plate impeller as gas sparger[J]. Chemical Engineering Science, 2018, 192: 665-677. | 42 | GUO Dongsheng, JI Xiaojun, REN Lujing, et al. Improving docosahexaenoic acid production by Schizochytrium sp.using a newly designed high-oxygen-supply bioreactor[J]. AIChE Journal, 2017, 63(10): 4278-4286. | 43 | ZHAO Luhaibo, LV Min, TANG Zhiyong, et al. Enhanced photo bio-reaction by multiscale bubbles[J]. Chemical Engineering Journal, 2018, 354: 304-313. | 44 | BRITTLE S, DESAI P, Woon Choon NG, et al. Minimising microbubble size through oscillation frequency control[J]. Chemical Engineering Research and Design, 2015, 104: 357-366. | 45 | HANOTU J O, BANDULASENA H, ZIMMERMAN W B. Aerator design for microbubble generation[J] Chemical Engineering Research and Design, 2017, 123: 367-376. | 46 | REHMAN F, MEDLEY G J D, BANDULASENA H, et al. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants[J]. Environmental Research, 2015, 137: 32-39. | 47 | ZIMMERMAN W B, HEWAKANDAMBY B N, TESA? V, et al. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation[J]. Food and Bioproducts Processing, 2009, 87(C3): 215-227. | 48 | AL-MASHHADANI M K H, WILKINSON S J, ZIMMERMAN W B. Airlift bioreactor for biological applications with microbubble mediated transport processes[J]. Chemical Engineering Science, 2015, 137: 243-253. | 49 | HANOTU J, KONG Dexu, ZIMMERMAN W B. Intensification of yeast production with microbubbles[J]. Food and Bioproducts Processing, 2016, 100: 424-431. | 50 | MULAKHUDAIR A R, HANOTU J, ZIMMERMAN W B. Exploiting microbubble-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment[J]. Biomass and Bioenergy, 2016, 93: 187-193. | 51 | LIU Chun, XIAO Taimin, ZHANG Jing, et al. Effect of membrane wettability on membrane fouling and chemical durability of SPG membranes used in a microbubble-aerated biofilm reactor[J]. Separation and Purification Technology, 2014, 127: 157-164. | 52 | LIU Chun, TANAKA H, ZHANG Lei, et al. Fouling and structural changes of Shirasu porous glass (SPG) membrane used in aerobic wastewater treatment process for microbubble aeration[J]. Journal of Membrane Science, 2012, 421: 225-231. | 53 | LIU Chun, TANAKA H, ZHANG Jing, et al. Successful application of Shirasu porous glass (SPG) membrane system for microbubble aeration in a biofilm reactor treating synthetic wastewater[J]. Separation and Purification Technology, 2013, 103: 53-59. | 54 | ZHANG Lei, LIU Junliang, LIU Chun, et al. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment[J]. Water Science & Technology, 2016, 74(1): 138-146. | 55 | 刘春, 肖太民, 张晶, 等. 微气泡曝气对生物膜反应器启动运行性能影响[J]. 中国环境科学, 2014, 34(12): 3093-3098. | 55 | LIU Chun, XIAO Taimin, ZHANG Jing, et al. Influence of microbubble aeration on start-up and performance of a biofilm reactor[J]. China Environmental Science, 2014, 34(12): 3093-3098. | 56 | ZIMMERMAN W B, ZANDI M, TESA? V, et al. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina[J]. Applied Energy, 2011, 88(10): 3357-3369 | 57 | CHENG Jun, XU Junchen, YE Qing, et al. Strengthening mass transfer of carbon dioxide microbubbles dissolver in a horizontal tubular photo-bioreactor for improving microalgae growth[J]. Bioresource Technology, 2019, 277: 11-17. | 58 | CHENG Jun, LAI Xin, YE Qing, et al. A novel jet-aerated tangential swirling-flow plate photobioreactor generates microbubbles that enhance mass transfer and improve microalgal growth[J]. Bioresource Technology, 2019, 288: 121531. | 59 | AL-MASHHADANI M K H, WILKINSON S J, ZIMMERMAN W B. Carbon dioxide rich microbubble acceleration of biogas production in anaerobic digestion[J]. Chemical Engineering Science, 2016, 156: 24-35. | 60 | PETERAT G, SCHMOLKE H, LORENZ T, et al. Characterization of oxygen transfer in vertical microbubble columns for aerobic biotechnological processes[J]. Biotechnology and Bioengineering, 2014, 111(9): 1809-1819. |
|