1 |
陈伟军, 刘妮, 肖晨, 等. CO2水合物浆在蓄冷空调中的应用前景[J]. 制冷学报, 2012, 33(3): 1-4.
|
|
CHEN Weijun, LIU Ni, XIAO Chen, et al. Perspective of CO2 hydrate slurry application in air conditioning system with cool storage[J]. Journal of Refrigeration, 2012, 33(3): 1-4.
|
2 |
孙嘉颖, 谢应明, 徐政涛, 等. 纳米流体强化CO2水合物生成的研究进展[J]. 现代化工, 2019, 39(12): 26-30.
|
|
SUN Jiaying, XIE Yingming, XU Zhengtao, et al. Research progress in nanofluids-enhanced formation of CO2 hydrate[J]. Modern Chemical Industry, 2019, 39(12): 26-30.
|
3 |
叶鹏, 刘道平, 时竞竞. 二氧化碳水合物生成驱动力的研究[J]. 天然气化工, 2013, 38(2): 38-41.
|
|
YE Peng, LIU Daoping, SHI Jingjing, et al. Study on driving force for carbon dioxide hydrate formation[J]. Natural Gas Chemical Industry, 2013, 38(2): 38-41.
|
4 |
王树立, 黄俊尧, 闫朔, 等. 基于化学亲和力模型的水合物生成动力学[J]. 化工进展, 2020, 39(3): 966-974.
|
|
WANG Shuli., HUANG Junyao, YAN Shuo, et al. Hydrate formation kinetics based on chemical affinity model[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 966-974.
|
5 |
HUANG Yingchao, JIN Shuo, WU Liqun. A hydrate blockage recognition technique for natural gas pipelines based on BP neural network[J]. Journal of Physics: Conference Series, 2019, 1345(1): 022004.
|
6 |
唐永红, 王超, 龚安, 等. 基于小波神经网络的水合物形成条件预测方法[J]. 计算机与现代化, 2013(6): 5-8.
|
|
TANG Yonghong, WANG Chao, GONG An, et al. A prediction method for hydrate formation conditions based on wavelet neural network[J]. Computer and Modernization, 2013(6): 5-8.
|
7 |
PARENTE M T, MATTIS S, GUPTA S. Efficient parameter estimation for a methane hydrate model with active subspaces[J]. Computational Geosciences, 2019, 23(2): 355-372.
|
8 |
文涛, 刘建仪, 周昊. GRM(1, n)模型在天然气水合物生成预测中的应用[J]. 天然气技术, 2007, 1(4): 41-43.
|
|
WEN Tao, LIU Jianyi, ZHOU Hao. Application of GRM (1, n) model in prediction of gas hydrate formation[J]. Natural Gas Technology, 2007, 1(4): 41-43.
|
9 |
付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
|
|
FU Kangwei, ZHANG Xueqiang, PENG Yan. Application of BP neural network algorithm in prediction of land natural gas hydrate accumulation[J]. Geophysical and Geochemical Exploration, 2019, 43 (3): 486-493.
|
10 |
马金凤, 梁建, 郭军, 等. BP神经网络在天然气水合物化探中的应用[J]. 地质学刊, 2016, 40(1): 113-117.
|
|
MA Jinfeng, LIANG Jian, GUO Jun, et al. Application of BP neural network in gas hydrate exploration[J]. Journal of Geology, 2016, 40 (1): 113-117.
|
11 |
GHIASI M M, NOOROLLAHI Y, ASLANI A. CO2 hydrate: modeling of incipient stability conditions and dissociation enthalpy[J]. Petroleum Science and Technology, 2018, 36(4): 259-265.
|
12 |
MESBAH M, SOROUSH E, ROHAM M, et al. Phase equilibrium modeling of semi-clathrate hydrates of the CO2+H2/CH4/N2+TBAB aqueous solution system[J]. Petroleum Science & Technology, 2017, 35(15): 1588-1594.
|
13 |
慕亚茹. 基于灰色-RBF算法的瓦斯水合物相平衡预测研究[D]. 哈尔滨: 黑龙江科技大学, 2015.
|
|
MU Yaru. Gas hydrate equilibrium prediction research based on gray-RBF algorithm[D]. Harbin: Heilongjiang University of Science and Technology, 2015.
|
14 |
马贵阳, 宫清君, 潘振, 等. 基于支持向量机结合遗传算法的天然气水合物相平衡研究[J]. 天然气工业, 2017, 37(5): 46-52.
|
|
MA Guiyang, GONG Qingjun, PAN Zhen, et al. GA-SVM based study on natural gas hydrate phase equilibrium[J]. Natural Gas Industry, 2017, 37 (5): 46-52.
|
15 |
苏鑫, 裴华健, 吴迎亚, 等. 应用经遗传算法优化的BP神经网络预测催化裂化装置焦炭产率[J]. 化工进展, 2016, 35(2): 389-396.
|
|
SU Xin, PEI Huajian, WU Yingya, et al. Predicting coke yield of FCC unit using genetic algorithm optimized BP neural network[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 389-396.
|
16 |
贺婷婷, 陆军, 丁进良, 等. 原油总碳含量的粒子群优化集成神经网络预测模型[J]. 控制理论与应用, 2019, 36(2): 192-198.
|
|
HE Tingting, LU Jun, DING Jinliang, et al. Prediction model of total carbon content of crude oil using ensemble random weights neural network optimized by particle swarm optimization[J]. Control Theory & Application, 2019, 36(2): 192-198.
|
17 |
周麟晨, 孙志高, 李娟, 等. 水合物形成促进剂研究进展[J]. 化工进展, 2019, 38(9): 4131-4141.
|
|
ZHOU Linchen, SUN Zhigao, LI Juan, et al. Progress of hydrate formation promoters[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4131-4141.
|
18 |
谢振兴, 谢应明, 周兴法, 等. 充注压力对压缩式制冷循环连续制备CO2水合物的影响[J]. 化工学报, 2014, 65(6): 2301-2307.
|
|
XIE Zhenxing, XIE Yingming, ZHOU Xingfa, et al. Effects of charge pressure on continuous production of CO2 hydrate in compression refrigeration cycle[J]. CIESC Journal, 2014, 65(6): 2301-2307.
|
19 |
庄雅琪, 谢应明, 耿时江, 等. 充注压力对CO2水合物蓄冷系统性能的影响[J]. 制冷技术, 2017, 37(6): 6-10.
|
|
ZHUANG Yaqi, XIE Yingming, GENG Shijiang, et al. Effect of charge pressure on performance of CO2 hydrate cool storage system[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 6-10.
|
20 |
周麟晨, 孙志高, 陆玲, 等. 有机相变乳液中HCFC-141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
|
|
ZHOU Linchen, SUN Zhigao, LU Ling, et al. Formation and stability of HCFC-141b hydrate in organic phase change emulsion[J]. CIESC Journal, 2019, 70(5): 1674-1681.
|
21 |
黄鸿云, 刘卫校, 丁佐华. 基于多维灰色模型及神经网络的销售预测[J]. 软件学报, 2019, 30(4): 1031-1044.
|
|
HUANG Hongyun, LIU Weixiao, DING Zuohua. Sales forecasting based on multi-dimensional grey model and neural network[J]. Journal of Software, 2019, 30 (4): 1031-1044.
|
22 |
YIN Kedong, GENG Yan, LI Xuemei. Improved grey prediction model based on exponential grey action quantity[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 560-570.
|
23 |
ZHAO Biao, YU Tianyu, DING Wenfen, et al. BP neural network based flexural strength prediction of open-porous Cu-Sn-Ti composites[J]. Progress in Natural Science: Materials International, 2018, 28(3): 315-324.
|
24 |
ZHAO Guodong, ZHANG Yuewei, SHI Yiqi, et al. The application of BP neural networks to analysis the national vulnerability[J]. Computers Materials & Continua, 2019, 58(2): 421-436.
|
25 |
王书涛, 陈东营, 王兴龙, 等. 一种荧光光谱法和PSO-BP神经网络相结合的山梨酸钾浓度测定的新方法[J]. 光谱学与光谱分析, 2015, 35(12): 3549-3554.
|
|
WANG Shu-tao, CHEN Dong-ying, WANG Xing-long, et al. A new method for the determination of potassium sorbate combining fluorescence spectra method with PSO-BP neural network[J]. Spectroscopy and Spectral Analysis, 2015, 35(12): 3549-3554.
|
26 |
LIU Zhenpeng, HE Yupeng, WANG Wensheng, et al. DDoS attack detection scheme based on entropy and PSO-BP neural network in SDN[J]. China Communications, 2019, 16(7): 144-155.
|
27 |
王志芳, 王书涛, 王贵川. 粒子群优化BP神经网络在甲烷检测中的应用[J]. 光子学报, 2019, 48(4): 147-154.
|
|
WANG Zhifang, WANG Shutao, WANG Guichuang. Application of particle swarm optimization BP neural network in methane detection[J]. Acta Photonica Sinica, 2019, 48(4): 147-154.
|
28 |
VISCONDI G F, ALVES-SOUZA S N. A Systematic literature review on big data for solar photovoltaic electricity generation forecasting[J]. Sustainable Energy Technologies and Assessments, 2019, 31: 54-63.
|
29 |
范胜龙, 邱凌婧, 茹凯丽, 等. 基于BP神经网络和支持向量机的农用地分等方法研究[J]. 中国农业大学学报, 2018, 23(12): 138-148.
|
|
FAN Shenglong, QIU Lingjing, RU Kaili, et al. Classification method of agricultural land quality based on back-propagation neural network and support vector machine[J]. Journal of China Agricultural University, 2018, 23(12): 138-148.
|
30 |
吴强, 张家豪, 高霞, 等. 热力学促进剂对瓦斯水合物相平衡的影响[J]. 黑龙江科技大学学报, 2016, 26(3): 235-239.
|
|
WU Qiang, ZHANG Jiahao, GAO Xia, et al. Effect of thermodynamics promoters on phase equilibrium of mine gas hydrate[J]. Journal of Heilongjiang University of Science and Technology, 2016, 26(3): 235-239.
|