1 | 北极星太阳能光伏网. 2019年全球光热发电建成装机增至6451MW,中国贡献52.41%新增容量[OL]. (2020-01-08)[2020-05-06]. . | 2 | 中国电力企业联合会. 电力发展“十三五”规划(2016—2020年)[OL]. (2016-12-26)[2020-05-06]. . | 3 | 国家能源局. 2019年上半年风电并网运行情况[OL]. (2019-07-26)[2020-05-06]. . | 3 | National Energy Administration. Wind power grid-connected market in the first half of 2019[OL]. (2016-12-26)[2020-05-06]. . | 4 | 朱芳啟, 江龙, 王丽伟, 等. MnCl2-CaCl2-NH3再吸附温度提升系统储能特性[J]. 化工学报, 2016, 67(4): 1453-1458. | 4 | ZHU Fangqi, JIANG Long, WANG Liwei, et al. Energy storage properties of MnCl2-CaCl2-NH3 resorption temperature-lifting system[J]. CIESC Journal, 2016, 67(4): 1453-1458. | 5 | 赵璇, 赵彦杰, 王景刚, 等. 太阳能跨季节储热技术研究进展[J]. 新能源进展, 2017(5): 73-80. | 5 | ZHAO Xuan, ZHAO Yanjie, WANG Jinggang, et al. Research progress on solar seasonal thermal energy storage[J]. Advances in New and Renewable Energy, 2017(5): 73-80. | 6 | 陈枭, 张仁元, 毛凌波, 等. 石蜡类相变材料的研究及应用进展[J]. 材料研究及与应用, 2008, 2(2): 89-92. | 6 | CHEN Xiao, ZHANG Renyuan, MAO Lingbo, et al. Progress in research and application of paraffin wax phase change material[J]. Materials Research and Application, 2008, 2(2): 89-92. | 7 | SHANG B, HU J, HU R,et al. Modularized thermal storage unit of metal foam/paraffin composite[J]. International Journal of Heat and Mass Transfer, 2018, 125: 596-603. | 8 | LUO D, WEI F, SHAO H,et al. Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials[J]. Journal of Materials Science, 2018, 53(22): 15500-15513. | 9 | 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6): 1231-1241. | 9 | YE Feng, QU Jianglan, ZHONG Junyu, et al. Research advances in phase change materials for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1231-1241. | 10 | GHONEIM A A. Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems[J]. Solar Energy, 1989, 42(3): 209-220. | 11 | ADBEL K, MORRISON D J. Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems[J]. Solar Energy, 1978, 20(1): 57-67. | 12 | NAZIR H, BATOOL M, ALI M, et al. Fatty acids based eutectic phase change system for thermal energy storage applications[J]. Applied Thermal Engineering, 2018, 142:466-475. | 13 | RAVOTTI R, FELLMANN O, LARDON N, et al. Synthesis and investigation of thermal properties of highly pure carboxylic fatty esters to be used as PCM[J]. Applied Sciences, 2018, 8:1069. | 14 | 方晓明, 张正国. 硬酯酸/膨润土复合相变储热材料研究[J] .非金属矿, 2005, 28(4): 23-27. | 14 | FANG Xiaoming, ZHANG Zhengguo. Study on stearic acid/ bentonite composite phase change material for thermal storage[J]. Non-Metallic Mines, 2005, 28(4): 23-27. | 15 | 刘弋潞, 王春燕, 宿旭昊, 等. 硬脂酸/钠基有机膨润土相变储能石膏板的性能研究[J]. 化工新型材料, 2015, 43(6): 222-227. | 15 | LIU Yilu, WANG Chunyan, SU xuhao, et al. Performance study of the phase change stearic acid/sodium based organic bentonite gypsum board for energy storage[J]. New Chemical Materials, 2015, 43(6): 222-227. | 16 | THAKARE K A, VISHWAKARMA H G, BHAVE A G, et al. Experimental incestigation of possible use of HDPE as thermal storage material in thermal storage type solar cookers[J]. International Journal of Research in Engineering and Technology, 2015, 4(12): 92-99. | 17 | WAGNER M H, KHEIRANDISH S, YAMAGUCHI M. Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends[J]. Rheologica Acta, 2004, 44: 198-218. | 18 | 郭力. 高密度聚乙烯支链结构、结晶行为和力学性能研究[D]. 大庆: 东北石油大学, 2017. | 18 | GUO Li. Study on branches structure, crystallization, behavior, and mechanical, properties of high density polyethylene[D]. Daqing: Northeast Petroleum University, 2017. | 19 | 黄晓梅, 宋波. HDPE/炭素材料导热复合材料研究进展[J]. 山东化工, 2019, 16: 65-66. | 19 | HUANG Xiaomei, SONG Bo. Research progress of HDPE/carbon material thermal conductive composites[J]. Shandong Chemical Industry, 2019, 16: 65-66. | 20 | 蔡伟, 孙志高, 马鸿凯, 等. 有机复合相变材料性能研究[J]. 化工新型材料, 2015, 43(8): 87-89. | 20 | CAI Wei,SUN Zhigao, MA Hongkai, et al. Research on property of organic composite phase change materials[J]. New Chemical Materials, 2015, 43(8): 87-89.9. | 21 | 王朋. 酯类相变蓄热保温温室墙体材料开发研究[D]. 西安: 西北农林科技大学, 2012. | 21 | WANG Peng. Developing thermal storage material incorporating composite esters phase change material in greenhouse walls[D]. Xi’an: Northwest A&F University, 2012. | 22 | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. | 22 | LENG Guanghui, CAO hui, PENG Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075. | 23 | 王霞, 王利恩. 熔融盐储热技术在新能源行业中的应用进展[J]. 电气制造, 2013(10): 74-78. | 23 | WANG Xia, WANG Li’en. Research on the molten salt thermal storage materials used in new resources area[J]. Electrical Manufacturing, 2013(10): 74-78. | 24 | 闫全英, 孙相宇, 王丽娟, 等. 三元碳酸盐混合物的制备及热物性研究[J]. 化工新型材料, 2017, 45(9): 190-192. | 24 | YAN Quanying, SUN Xiangyu, WANG Lijuan, et al. Research on preparation and thermal property of high temperature carbonate molten salt[J]. New Chemical Materials, 2017, 45(9): 190-192. | 25 | 李爱菊. 无机盐/陶瓷基复合储能材料制备、性能及其熔化传热过程的研究[D]. 广州: 广东工业大学, 2005. | 25 | LI Aiju. Study on fabrication technology performances and melting heat transfer process of salt/ceramic composite energy storage material[D]. Guangzhou: Guangdong University of Technology, 2005. | 26 | 贺万玉. 混合氯化熔盐的热物性及腐蚀性实验研究[D]. 北京: 北京建筑大学, 2016. | 26 | HE Wanyu. Experimental study on thermal properties and corrosion resistance of mixed chlorinated molten salts[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016. | 27 | LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132. | 28 | SERRANO-LóPEZ R, FRADERA J, CUESTA-LóPEZ S. Molten salts database for energy applications[J]. Chemical Engineering and Processing: Process Intensification, 2013, 73: 87-102. | 29 | CHIERUZZI M, MILIOZZI A, CRESCENZI T, et al. Synthesis and characterization of nanofluids useful in concentrated solar power plants produced by new mixing methodologies for large-scale production[J]. Journal of Heat Transfer of the ASME, 2018, 140(4): 042401-1. | 30 | 张晗. 三元硝酸盐的改性研究[D]. 武汉: 武汉理工大学, 2014. | 30 | ZHANG Han. The modification research of ternary nitrates[D]. Wuhan: Wuhan University of Technology, 2014. | 31 | LU W, LIU G Z, XIONG Z B, et al. An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage[J]. Solar Energy, 2020, 195: 573-580. | 32 | FERNáNDEZ A G, USHAK S, GALLEGUILLOS H, et al. Thermal characterization of an innovative quaternary molten nitrate mixture for energy storage in CSP plants[J]. Solar Energy Materials and Solar Cells, 2015, 132: 172-177. | 33 | BIRCHENALL C E, RIECHMAN A F. Heat storage in eutectic alloys [J]. Metallurgical and Materials Transactions A, 1980, 11(8): 1415-1420. | 34 | FARKAS D, BIRCHENALL C E. New eutectic alloys and their heats of transformation[J]. Metallurgical Transactions A, 1985, 16(3): 323-328. | 35 | 张国才, 徐哲, 陈运法, 等. 金属基相变材料的研究进展及应用[J]. 储能科学与技术, 2012, 1(1): 74-81. | 35 | ZHANG Guocai, XU Zhe, CHEN Yunfa, et al. Progress in metal-based phase change materials for thermal energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 74-81. | 36 | 陈正荣, 邢登清, 王守彪. 金属相变高温储存太阳能的研究[J]. 西藏科技, 1995(4): 10-12. | 36 | CHENG Zhengrong, XING Dengqing, WANG Shoubiao. The research on solar energy storage using metal phase change materials[J]. Tibet Science and Technology, 1995(4): 10-12. | 37 | 孙建强, 张仁元, 沈学忠, 等. Al-34%Mg-6%Zn 和 Al-28%Mg-14%Zn合金的热分析研究[J]. 广东工业大学学报, 2006, 23(3): 8-15. | 37 | SUN Jianqiang, ZHANG Renyuan, SHEN Xuezhong, et al. Thermal analytical investigations of Al-34%Mg-6%Zn and Al-28%Mg-14%Zn alloys[J]. Journal of Guangdong University of Technology, 2006, 23(3): 8-15. | 38 | 程晓敏, 官计生, 胡胜, 等. 铝合金高温储热材料及储热系统设计[J]. 中国材料科技与设备, 2008(2): 91-93. | 38 | CHENG Xiaomin, GUAN Jisheng, HU Sheng, et al. Design of high temperature thermal energy storage aluminum alloy and system[J]. Chinese Materials Science Technology & Equipment, 2008(2): 91-93. | 39 | 程晓敏, 董静, 吴兴文, 等. Al-Si-Cu-Mg-Zn 合金的高温相变储热性能研究[J]. 金属热处理, 2010, 35(3): 13-16. | 39 | CHENG Xiaomin, DONG Jing, WU Xingwen, et al. Thermal storage properties of high-temperature phase transformation on Al-Si-Cu-Mg-Zn alloys[J]. Heat Treatment of Metals, 2010, 35(3): 13-16. | 40 | 许骏, 于思荣. 铝基合金相变储热材料的研究现状与发展趋势[J]. 材料导报, 2013, 27(19): 93-97. | 40 | XU Jun, YU Sirong. Research and application progress of Al-based alloy phase change materials using for thermal storage[J]. Materials Review, 2013, 27(19): 93-97. | 41 | BLANCO-RODRíGUEZ P, RODRíGUEZ-ASEGUINOLAZA J, RISUE?O E,et al. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications[J]. Energy, 2014, 72:414-420. | 42 | 孙正, 程晓敏, 朱教群, 等. Mg基高温相变储热共晶合金熔化相变焓的研究[J]. 功能材料, 2017, 48(2): 2236-2240. | 42 | SUN Zheng, CHENG Xiaomin, ZHU jiaoqun, et al. Latent heat of melting of Mg-based eutectic alloys as high temperature phase change materials for latent storage[J]. Journal of Functional Materials, 2017, 48(2): 2236-2240. | 43 | 冷光辉, 兰志鹏, 葛志伟, 等. 储热材料研究进展[J]. 储能科学与技术, 2015, 4(2): 119-130. | 43 | LENG Guanghui, LAN Zhipeng, GE Zhiwei, et al. Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology, 2015, 4(2): 119-130. | 44 | 隋艳伟, 李邦盛, 刘爱辉, 等. 立式离心铸造液态金属中气泡的长大规律[J]. 特种铸造及有色合金, 2009, 29(3): 210-212. | 44 | Yanwei SUI, LI Bangsheng, LIU Aihui, et al. Gas bubble growth in vertical centrifugal casting liquid metal[J]. Special-cast and Non-ferrous Alloys, 2009, 29(3): 210-212. | 45 | 孙建强, 张仁元. 金属相变储能与技术的研究与发展[J]. 材料导报, 2005, 19(8): 99-101. | 45 | SUN jianqiang, ZHANG Renyuan. Review of thermal energy storage with metal phase change materials[J]. Materials Review, 2005, 19(8): 99-101. | 46 | 顾晓华. 聚乙二醇类高分子型固固相变储能材料的研究[D]. 上海: 东华大学, 2008. | 46 | GU Xiaohua. Researches on PEG-macromolecule solid-solid phase changed energy storage materials[D]. Shanghai: Donghua University,2008. | 47 | 樊耀峰, 张兴祥. 有机固-固相变材料的研究进展[J]. 材料导报, 2003, 17(7): 50-53. | 47 | FAN Yaofeng, ZHANG Xingxiang. Progress in studies of solid-solid phase change materials[J]. Materials Review, 2003, 17(7): 50-53. | 48 | 钟秋, 张威, 赵春芳, 等. 固-固相变储热材料的研究进展[J]. 广州化工, 2016(23): 4-6. | 48 | ZHONG Qiu, ZHANG Wei, ZHAO Chunfang, et al. Research progress on polymer solid-solid phase transition materials for thermal energy storage[J]. Guangzhou Chemical Industry, 2016(23): 4-6. | 49 | 王毅, 夏天东, 冯辉霞. 有机相变储热材料的研究进展[J]. 材料导报, 2011, 25(2): 66-74. | 49 | WANG Yi, XIA Tiandong, FENG Huixia. Research and development of heat storage using organic phase change materials[J]. Materials Review, 2011, 25(2): 66-74. | 50 | 于少明, 蒋长龙, 杭国培, 等. 固固相变贮能材料研究现状与进展[J]. 化工新型材料, 2002(7): 19-21. | 50 | YU Shaoming, JIANG Changlong, HANG Guopei, et al. Current situation and progress in studies of solid-solid phase change materials for energy storage[J]. New Chemical Materials, 2002(7): 19-21. | 51 | FALLAHI A, GULDENTOPS G, TAO M, et al. Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties[J]. Applied Thermal Engineering, 2017, 127: 1427-1441. | 52 | 沈向阳,陆建峰,丁静,等.熔盐在螺旋槽管和横纹管内强化传热特性[J]. 工程热物理学报, 2013, 34(6): 1149-1152. | 52 | SHEN Xiangyang, LU Jianfeng, DING Jing, et al. Heat transfer enhancement characteristics of molten salt in the spiral groove tubes and striated tubes[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1149-1152. | 53 | 郭茶秀, 魏新利. 热能存储技术与应用[M]. 北京: 化学工业出版社, 2005: 81-83. | 53 | GUO Chaxiu, WEI Xinli. Thermal energy storage technology and application[M]. Beijing: Chemical Industry Press, 2005: 81-83. | 54 | 康亚盟, 刁彦华, 赵耀华, 等. 纳米复合相变储热材料的制备与特性[J]. 化工学报, 2016, 67(S1): 372-378. | 54 | KANG Yameng, DIAO Yanhua, ZHAO Yaohua, et al. Preperation and properties of nano of composite phase change thermal storage materials[J]. CIESC Journal, 2016, 67(S1): 372-378. | 55 | ZALBA B, MARI?N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 3(3): 251-283. | 56 | 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变储热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64. | 56 | HUA Jianshe, ZHANG Jiao, ZHANG Yan, et al. Study on thermal properties and shape-stabilizing of expanded graphite/paraffin composite phase change material[J]. Materials Review, 2016, 30(12): 61-64. | 57 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. | 58 | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//1995 International Mechanical Engineering Congress and Exhibition. San Francisco, 1995. | 59 | 王鑫, 方建华, 吴江, 等. 相变材料封装定型技术研究进展[J]. 化工新型材料, 2019, 47(9): 58-61. | 59 | WANG Xing, FANG Jianhua, WU Jiang, et al. Development of packaging technology for phase change material[J]. New Chemical Materials, 2019, 47(9): 58-61. | 60 | 尉菁华, 刘欢, 连慧琴, 等. 棕榈酸/二氧化硅相变微胶囊的制备及性能研究[J]. 中国塑料, 2020, 34(2): 1-8. | 60 | WEI Jinghua, LIU Huan, LIAN Huiqin, et al. Preparation and performance of phase-change microcapsules based on palmitic acid core and silica shell[J]. China Plastics, 2020, 34(2): 1-8. | 61 | 张涛, 李宏伟, 王建明, 等. 端羟基聚丁二烯聚氨酯相变微胶囊的制备及其性能[J]. 纺织学报, 2018, 39(3): 86-91. | 61 | ZHANG Tao, LI Hongwei, WANG Jianming, Preparation and properties of hydroxyl-terminated polybutadiene phase-change polyurethane microcapsule[J]. Journal of Textile Research, 2018, 39(3): 86-91. | 62 | 刘晓庚, 谢亚桐. 微胶囊制备方法的比较[J]. 粮食与食品工业, 2005, 12(1): 28-30. | 62 | LIU Xiaogeng, XIE Yatong, Comparison of preparation methods of micro-encapsulation[J]. Cereal and Food Industry, 2005, 12(1): 28-30. | 63 | 郝敏, 李忠辉, 吴秋芳, 等.相变材料封装技术的研究进展[J]. 材料导报, 2014, 28(5): 98-103. | 63 | HAO Min, LI Zhonghui, WU Qiufang, et al. Research progress of encapsulation technology for phase change materials[J]. Materials Review, 2014, 28(5): 98-103. | 64 | GRAHAM M, SHCHUKINA E, DE CASTRO P F, et al. Nanocapsules containing salt hydrate phase change materials for thermal energy storage[J]. Journal of Materials Chemistry A, 2016, 4(43): 16906-16912. | 65 | 金波, 李明佳, 徐阳, 等. 双层填充床储热器储热性能实验研究[J]. 西安交通大学学报, 2018, 52(7): 80-86. | 65 | JIN Bo, LI Mingjia, XU Yang, et al. Experimental study on the thermal performance of a thermal storage with double-layered packed bed[J].Journal of Xi’an Jiaotong University, 2018, 52(7): 80-86. | 66 | 何兆禹. 斜温层相变蓄热实验研究[D]. 北京: 华北电力大学, 2019. | 66 | HE Zhaoyu. Experimental study on the thermocline storage tank with phase change material[D].Beijing: North China Electric Power University, 2019. | 67 | JIANG Z, LENG G, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172. | 68 | 许永, 张叶龙, 赵伟杰, 等. 中高温复合相变储热材料的制备及性能研究[J]. 无机盐工业, 2018(5): 36-39. | 68 | XU Yong, ZHANG Yelong, ZHAO Weijie, et al. Research on preparation and performance of shape stable carbonate/chloride based composite phase change materials for medium and high temperature[J]. Inorganic Chemicals Industry, 2018(5): 36-39. | 69 | 李爱菊, 王毅, 张仁元. 无机盐/陶瓷基复合相变储能材料的研究进展[J]. 材料导报, 2007, 21(5): 29-31. | 69 | LI Aiju, WANG Yi, ZHANG Renyuan. Research development of inorganic salt/ceramic composite phase change energy storage material[J]. Materials Review, 2007, 21(5): 29-31. | 70 | 钱婷婷. 硅藻土基定形复合相变储能材料的制备与性能研究[D]. 北京: 中国地质大学, 2017. | 70 | QIAN Tingting. The preparation and characterization of a shape-stabilized composite phase change material of polyethylene glycol/diatomite with enhanced thermal performance[D]. Beijing: China University of Geosciences, 2017. | 71 | QIAN T T, LI J, WANG L, et al. Pore structure modified diatomite-supported PEG composites for thermal energy storage[J]. Scientific Reports, 2016, 6: 32392. | 72 | 李佳佳, 陆艺超, 叶光斗, 等. 纺丝原液原位合成相变材料微胶囊制备石蜡/PVA储能纤维[J]. 复合材料学报, 2012, 29(3): 79-84. | 72 | LI Jiajia, LU Yichao, YE Guangdou, et al. In-situ synthesis of energy storage paraffin/PVA fibre with phase change micro capsules in the spinning solution[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 79-84. | 73 | 李昭, 叶光斗, 徐建军, 等. 聚乙二醇-聚乙烯醇相变储能纤维的制备及其性能[J]. 合成纤维, 2015, 44(7): 14-18. | 73 | LI Zhao, YE Guangdou, XU Jianjun, et al. Preparation and charaterization of polyethylene glycol-polyvinly alcohol thermal regulating fiber[J]. Synthetic Fiber in China, 2015, 44(7): 14-18. | 74 | CHEN C, WANG L, HUANG Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite[J]. Polymer, 2007, 48(18): 5202-5207. | 75 | 王丽娜. 纳米复合相变材料的制备及性能研究[D]. 兰州: 兰州理工大学, 2017. | 75 | WANG Lina. The study on preparation and performances of nano-composites phase change materials[D]. Lanzhou: Lanzhou University of Technology, 2017. | 76 | CUI Wenlong, YUAN Yanping, SUN Liangliang, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials [J]. Renewable Energy, 2016, 99: 1029-1037. | 77 | WANG J, XIE H, XIN Z. Thermal properties of heat storage composites containing multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008: 104. | 78 | CHOI D H, LEE J, HONG H, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application[J]. International Journal of Refrigeration, 2014, 42:112-120. | 79 | MYERS J P D, ALAM T, KALAM R. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Applied Energy, 2016, 165(1): 225-233. | 80 | MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J]. Applied Thermal Engineering, 2016, 109: 901-905. | 81 | BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945-951. | 82 | MUHAMMAD M D. Review of PCMS and heat transfer enhancement methods applied in parabolic trough solar plants thermal storage systems[J]. Nigerian Journal of Technology, 2018, 37(1): 96-107. | 83 | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. | 84 | WU Z G, ZHAO C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85: 1371-1380. | 85 | REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58. | 86 | 袁维烨, 章学来, 华维三, 等. 膨胀石墨/三水乙酸钠复合相变材料储热的性能[J]. 化工进展, 2018, 37(11): 4405-4411. | 86 | YUAN Weiye, ZHANG Xuelai, HUA Weisan, et al. Thermal storage performance of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4405-4411. | 87 | GAO Liuhua, ZHAO Jun, AN Qingsong, et al. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied Thermal Engineering, 2017, 113: 858-866. | 88 | WANG Yifei, WANG Liang, XIE Ninging, et al. Experimental study on the melting and solidification behavior of erythritol in a vertical shelland-tube latent heat thermal storage unit[J]. International Journal of Heat and Mass Transfer, 2016, 99: 770-781. | 89 | ZHAO D, TAN G. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application[J] |
[1] |
肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] |
赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] |
杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] |
张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[5] |
胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] |
陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[7] |
董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[8] |
林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[9] |
时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[10] |
卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] |
张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[12] |
汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[13] |
王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[14] |
汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[15] |
常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
|
|